Advertisement

Cyanolichens: Nitrogen Metabolism

  • A. N. Rai

Keywords

Glutamine Synthetase Nitrogen Metabolism Glutamine Synthetase Activity Ammonia Assimilation Lichen Thalli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.G. and Duggan, P.S. (1999) Heterocyst and akinete differentiation in cyanobacteria, New Phytol. 144, 3–33.CrossRefGoogle Scholar
  2. Bergman, B. and Rai, A.N. (1989) The Nostoc-Nephroma symbiosis: localization, distribution pattern and levels of key proteins involved in nitrogen and carbon metabolism of the cyanobiont, Physiol. Plant. 77, 216–224.Google Scholar
  3. Bergman, B., Pettersson, A., Renstrom, E. and Tiberg, E. (1985) Immuno-gold localization of glutamine synthetase in a nitrogen-fixing cyanobacterium (Anabaena cylindrica), Planta 166, 329–334.CrossRefGoogle Scholar
  4. Bergman, B., Lindblad, P. and Rai, A.N. (1986) Nitrogenase in free-living and symbiotic cyanobacteria: immunoelectronmicroscopic localization, FEMS Microbiol. Letts. 35, 75–78.Google Scholar
  5. Bergman, B., Rai, A.N., Johansson, C. and Soderback, E. (1992) Cyanobacterial-plant symbioses, Symbiosis 14, 61–81.Google Scholar
  6. Bergman, B., Gallon, J.R., Rai, A.N. and Stal, L. (1997) N 2 fixation by non-heterocystous cyanobacteria, FEMS Microbiol. Rev. 19, 139–185.CrossRefGoogle Scholar
  7. Bernard, T. and Goas, G. (1968) Contribution a l’etude du metabolisme azote des lichens. Characterisation et dosages des methylamines de quelques especies de la famille des Stictacees, Comptes Rendus 267, 622–624.Google Scholar
  8. Bernard, T. and Goas, G. (1969) Contribution a l’etude du metabolisme azote des lichens. Mise en evidence de quelques transaminases, activite de la glutamate oxaloacetate transaminase dans cinq especes de la famille des Stictacees, CR Acad. Sci. Paris Ser. D 269, 1657.Google Scholar
  9. Bernard, T. and Goas, G. (1979) Contribution a l’etude du metabolisme azote des lichens. Glutamate dehydrogenases du lichen Lobaria laetevirens (Lightf.) Zahlbr. Caracteristiques de l’enzyme du Champignon, Physiol. Veg. 17, 535–546.Google Scholar
  10. Bernard, T. and Larher, F. (1971) Contribution a l’etude du metabolisme azote des lichens. Role de la glycine 14 C-2 dans la formation des methylamines cher Lobaria laetevirens, Comptes Rendus 272, 568–571.Google Scholar
  11. Cohen, S.S. (1971). Introduction to the Polyamines, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  12. Duan, X.Y., Shi, D.J., Wu, X.Q., Wu, Y.H. and Qiu, Z.S. (1994) The effects of immobilization on the activity of glutamine synthetase and the expression of the glnA gene in Anabaena sp. Strain 2B, Chinese J. Bot. 6, 102–106.Google Scholar
  13. Englund, B. (1977) The physiology of the lichen Peltigera aphthosa with special reference to the blue-green phycobiont (Nostoc sp.), Physiol. Plant. 41, 298–304.Google Scholar
  14. Feige, G.B. (1976) Untersuchungen zur Physiologie der Cephalodien der Flechte Peltigera aphthosa (L.) Willd. II. Das phtosynthetische 14 C-Mearkierungsmuster und der Kohlenhydrattransfer zwischen Phycobiont und Mycobiont, Z. Pflanzenphysiol. 80, 386–394.Google Scholar
  15. Frias, J.E., Flores, E. and Herrero, A. (1994) Requirements of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120, Mol. Microbiol. 14, 823–832.PubMedGoogle Scholar
  16. Flores, E., Muro-Paster, A.M. and Herrero, A. (1999) Cyanobacterial nitrogen assimilation genes and NtcA-dependent control of gene expression, in G.A. Peschek, W. Loffelhardt, and G. Schmetterer (eds.), The Photosynthetic Prokaryotes, Kluwer Academic Publishers, Dordrecht, pp. 463–477.Google Scholar
  17. Gallon, J.R. (1992) Reconciling the incompatible: N 2-fixation and O 2, New Phytol. 122, 571–609.Google Scholar
  18. Geitler, L. (1934) Beitrage zur kenntnis der Flechtensymbiose IV-V, Arch. Protistenk. 82, 51–85.Google Scholar
  19. Green, T.G.A., Horstmann, J., Bonnett, H., Wilins, A. and Silvester, W.B. (1980) Nitrogen fixation by members of Stictaceae (Lichenes) of New Zealand, New Phytol. 84, 339–348.Google Scholar
  20. Griffiths, H.B., Greenwood, A.D. and Millbank, J.W. (1972) The frequency of heterocysts in the Nostoc phycobiont of the lichen Peltigera canina, New Phytol. 71, 11–13.Google Scholar
  21. Hallbom, L. (1984) Sarcosine: a possible regulatory compound in the Peltigera praetextata-Nostoc symbiosis, FEMS Microbiol. Letts 22, 119–121.Google Scholar
  22. Hallbom, L., Bergman, B. and Rai, A.N. (1986) Immunogold localization of glutamine synthetase in the cyanobionts of the lichen Peltigera aphthosa and Peltigera canina, Lichen Physiol. Biochem. 1, 27–34.Google Scholar
  23. Haselkorn, R. (1998) How cyanobacteria count to 10, Science 282, 891–892.PubMedCrossRefGoogle Scholar
  24. Hawkesford, M.J., Reed, R.H., Rowell, P. and Stewart, W.D.P. (1981) Nitrogenase activity and membrane electrogenesis in the cyanobacterium Anabaena variabilis Kutz, Eur. J. Biochem. 115, 519–523.PubMedGoogle Scholar
  25. Hill, D.J. (1989) The control of cell cycle in microbial symbionts, New Phytol. 112, 175–184.Google Scholar
  26. Hitch, C.J.B. and Millbank, J.W. (1975a) Nitrogen metabolism in lichens VI. The blue-green phycobiont content, heterocyst frequency and nitrogenase activity in Peltigera species, New Phytol. 74, 473–476.Google Scholar
  27. Hitch, C.J.B. and Millbank, J.W. (1975b) Nitrogen metabolism in lichens VII. Nitrogenase activity and heterocyst frequency in lichens with blue-green phycobionts, New Phytol. 75, 239–244.Google Scholar
  28. Hitch, C.J.B. and Stewart, W.D.P. (1973) Nitrogen fixation by lichens in Scotland, New Phytol. 72, 509–524.Google Scholar
  29. Horstmann, J.L., Denison, W.C. and Silvester, W.B. (1982) 15 N 2-fixation and molybdenum enhancement of acetylene reduction by Lobaria spp., New Phytol. 92, 235–241.Google Scholar
  30. Huss-danell, K. (1979) The cephalodia and their nitrogenase activity in the lichen Stereocaulon paschale, Z. Pflazenphysiol. 95, 431–440.Google Scholar
  31. Honegger, R. (1991) Functional aspects of the lichen symbioses, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 553–578.CrossRefGoogle Scholar
  32. Janson, S., Bergman, B. and Rai, A.N. (1993) The marine lichen Lichina conflnis (O.F. Mull.) C. Ag.: ultrastructure and localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase in the cyanobiont, New Phytol. 124, 149–160.Google Scholar
  33. Kershaw, K.A. (1985) Physiological Ecology of Lichens, Cambridge University Press, Cambridge.Google Scholar
  34. Kershaw, K.A. and Millbank, J.W. (1970) Nitrogen metabolism in lichens II. The partition of cephalodial fixed nitrogen between the mycobiont and phycobiont of Peltigera aphthosa, New Phytol. 69, 75–79.Google Scholar
  35. Kleiner, D. (1985) Bacterial ammonium transport, FEMS Microbiol. Rev. 32, 87–100.Google Scholar
  36. Kleiner, D., Phillips, S.C. and Fitzke, E. (1981) Pathways and regulatory aspects of N 2 and NH 4 + assimilation in N 2-fixing bacteria, in H. Bothe and A. Trebst (eds.), Biology of Inorganic Nitrogen and Sulphur, Springer-Verlag, Berlin, pp. 131–140.Google Scholar
  37. Ladha, J.K., Rowell, P. and Stewart, W.D.P. (1978) Effects of 5-hydroxylysine on acetylene reduction and NH 4 + assimilation in the cyanobacterium Anabaena cylindrica, Biochem. Biophys. Res. Commun. 83, 688–696.PubMedCrossRefGoogle Scholar
  38. Lee, H.M., Vazques-Bermudez, M.F. and Tandeau de Marsac, N. (1999) The global nitrogen regulator NtcA regulates transcription of the signal transducer P 11 (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the cyanobacterium Synechococcus sp. Strain PCC 7942, J. Bacteriol. 181, 2692–2702.Google Scholar
  39. Madan, A.P. and Nierzwicki-Bauer, S.A. (1993) In-situ detection of transcripts for ribulose 1,5-bisphosphate carboxylase in cyanobacterial heterocysts, J Bacteriol 175, 7301–7306.PubMedGoogle Scholar
  40. Mackerras, A.H. and Smith, G.D. (1986) Evidence for direct repression of nitrogenase by ammonia in the cyanobacterium Anabaena cylindrica, Biochem. Biophys. Res. Commun. 134, 835.PubMedCrossRefGoogle Scholar
  41. Marton, K. and Galun, M. (1976) In vitro dissociation and reassociation of the symbionts in the lichen Heppia echinulata, Protoplasma 87, 135–143.CrossRefGoogle Scholar
  42. Meeks, J.C., Campbell, E., Hagen, K., Hitzeman, N. and Wong, F. (1999) Developmental alternatives of symbiotic Nostoc puntiforme in response to its plant partner Anthoceros punctatus, in G.A. Peschek, W. Loffelhardt, and G. Schmetterer (eds.), The Photosynthetic Prokaryotes, Kluwer Academic Publishers, Dordrecht, pp. 665–678.Google Scholar
  43. Millbank, J.W. (1972) Nitrogen metabolism in lichens IV. The nitrogenase activity of the Nostoc phycobiont in Peltigera canina, New Phytol. 71, 1–10.Google Scholar
  44. Millbank, J.W. (1974) Nitrogen metabolism in lichens V. The forms of nitrogen released by the blue-green phycobiont in Peltigera spp., New Phytol. 73, 1171–1181.Google Scholar
  45. Millbank, J.W. (1976) Aspects of nitrogen metabolism in lichens, in D.H. Brown, D.L. Hawkesworth and R.H. Bailey (eds.), Lichenology: Progress and Problems, Academic press, London, pp. 441–455.Google Scholar
  46. Ownby, J.D. (1977) Effects of amino acids on methionine-sulphoximine-induced heterocyst formation in Anabaena, Planta 136, 277–279.CrossRefGoogle Scholar
  47. Pargent, W. and Kleiner, D (1985) Characterization and regulation of ammonium (methylammonium) transport in Rhizobium meliloti, FEMS Microbiol. Letts. 30, 257–259.Google Scholar
  48. Quispel, A. (1992) A search for signals in endophytic microorganisms, in D.P.S. Verma (ed.), Molecular signals in Plant-Microbe Communications, CRC Press, Boca Raton, FL, pp. 471–491.Google Scholar
  49. Rai, A.N. (1980) Studies on the Nitrogen-Fixing Lichen Peltigera aphthosa Willd, PhD Thesis, Dundee University, Scotland.Google Scholar
  50. Rai, A.N. (1988) Nitrogen metabolism, in M. Galun (ed.), Lichenology Vol.I, CRC Press, Boca Raton, FL, pp. 201–237.Google Scholar
  51. Rai, A.N. (1990) Cyanobacterial-fungal symbioses: the cyanolichens, in A.N. Rai (ed.), Handbook of Symbiotic Cyanobacteria, CRC Press, Boca Raton, FL, pp. 9–41.Google Scholar
  52. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1980) NH 4 + assimilation and nitrogenase regulation in the lichen Peltigera aphthosa Willd, New Phytol. 85, 545–555.Google Scholar
  53. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1981a) Glutamate synthase activity in symbiotic cyanobacteria, J. Gen. Microbiol. 126, 515–518.Google Scholar
  54. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1981b) 15 N 2 incorporation and metabolism in the lichen Peltigera aphthosa Willd, Planta 152, 544–552.CrossRefGoogle Scholar
  55. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1981c) Nitrogenase activity and dark CO 2 fixation in the lichen Peltigera aphthosa Willd, Planta 151, 256–264.CrossRefGoogle Scholar
  56. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1982) Glutamate synthase activity of heterocysts and vegetative cells of the cyanobacterium Anabaena variabilis Kutz, J. Gen. Microbiol. 128, 2203–2205.Google Scholar
  57. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1983a) Interactions between cyanobacterium and fungus during 15 N 2-incorporation and metabolism in the lichen Peltigera canina, Arch. Microbiol. 134, 136–142.CrossRefGoogle Scholar
  58. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1983b) Mycobiont-cyanobiont interactions during dark nitrogen fixation by the lichen Peltigera aphthosa, Physiol. Plant. 57, 285–290.Google Scholar
  59. Rai, A.N., Rowell, P. and Stewart, W.D.P. (1984) Evidence for an ammonium transport system in free-living and symbiotic cyanobacteria, Arch. Microbiol. 137, 241–246.CrossRefGoogle Scholar
  60. Rai, A.N., Borthakur, M., Soderback, E. and Bergman, B. (1992) Immunogold localization of hydrogenase in the cyanobacterial-plant symbioses Peltigera canina, Anthoceros punctatus and Gunnera magellanica, Symbiosis 12, 131–144.Google Scholar
  61. Rai, A.N., Borthakur, M. and Paul, D. (1996). Symbiotic cyanobacteria: biotechnological applications, J. Sci. Indust. Res. 55, 742–752.Google Scholar
  62. Rai, A.N., Soderback, E. and Bergman, B. (2000) Cyanobacterium-plant symbioses, New Phytol. 147, 449–481.CrossRefGoogle Scholar
  63. Renstrom-Kellner, E., Rai, A.N. and Bergman, B. (1990) Correlation between nitrogenase and glutamine synthetase expression in the cyanobacterium Anabaena cylindrica, Physiol. Plant. 80, 12–19.CrossRefGoogle Scholar
  64. Richardson, D.H.S., Hill, D.J. and Smith, D.C. (1968) Lichen Physiology XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts, New Phytol. 67, 469–486.Google Scholar
  65. Rowell, P., Rai, A.N. and Stewart, W.D.P. (1985) Studies on the nitrogen metabolism of the lichens Peltigera aphthosa and Peltigera canina, in D.H. Brown (ed.), Lichen Physiology and Cell Biology, Plenum Press, London, pp. 145–160.Google Scholar
  66. Sampaio, M.J.A.M., Rai, A.N., Rowell, P. and Stewart, W.D.P. (1979) Occurrence, synthesis and activity of !!!!!glutamine synthetase in N2-fixing lichens, FEMS Microbiol. Letts. 6, 107–110.Google Scholar
  67. Singh, H.N., Rai, U.N., Rao, V.V. and Bagchi, S.N. (1983) Evidence for ammonia as an inhibitor of heterocyst and nitrogenase formation in the cyanobacterium Anabaena cycadae, Biochem. Biophys. Res. Commun. 111, 180–187.PubMedCrossRefGoogle Scholar
  68. Smith, D.C. (1960a) Srudies in the physiology of lichens I. The effects of starvation and of ammonia absorption upon the nitrogen content of Peltigera polydactyla, Ann. Bot. 24, 52–62.Google Scholar
  69. Smith, D.C. (1960b) Studies in the physiology of lichens 2. Absorption and utilization of some simple organic nitrogen compounds by Peltigera polydactyla, Ann. Bot. 24, 172–185.Google Scholar
  70. Smith, D.C. (1960c) Studies in the physiology of lichens 3. Experiments with dissected discs of Peltigera polydactyla, Ann. Bot. 24, 186–199.Google Scholar
  71. Smith, D.C., Muscatine, L. and Lewis, D.H. (1969) Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbioses, Biol. Rev. 44, 17–90.PubMedGoogle Scholar
  72. Smith, T.A. (1971) The occurrence, metabolism and functions of amines in plants, Biol. Rev. 46, 201–241.PubMedGoogle Scholar
  73. Smith, T.A. (1975) Recent advances in biochemistry of plant amines, Phytochemistry 14, 865–890.CrossRefGoogle Scholar
  74. Stewart, W.D.P. (1980) Some aspects of structure and function in N 2-fixing cyanobacteria, Annu. Rev. Microbiol. 34, 497–536.PubMedCrossRefGoogle Scholar
  75. Stewart, W.D.P. and Rowell, P. (1975) Effect of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH 3, acetylene reduction and heterocyst production in Anabaena cylindrica, Biochem. Biophys. Res. Commun. 65, 846–857.PubMedCrossRefGoogle Scholar
  76. Stewart, W.D.P. and Rowell, P. (1977) Modifications of nitrogen-fixing algae in lichen symbioses, Nature 265, 371–372.CrossRefGoogle Scholar
  77. Stewart, W.D.P., Rowell, P. and Rai, A.N. (1983) Cyanobacteria-eukaryotic plant symbioses, Ann. Microbiol. (Inst. Pasteur) 134B, 205–228.Google Scholar
  78. Thomas, J., Meeks, J.C., Wolk, C.P., Shaffer, P.W., Austin, S.M. and Chien, W.S. (1977) Formation of glutamine from 13 N ammonia, 13 N dinitrogen and 14 C glutamate by heterocysts isolated from Anabaena cylindrica, J. Bacteriol. 129, 1545–1555.PubMedGoogle Scholar
  79. Wolk, C.P., Thomas, J., Shaffer, P.W., Austin, S.M. and Galonsky, A. (1976) Pathways of nitrogen metabolism after fixation of 13 N-labelled nitrogen gas by the cyanobacterium Anabaena cylindrica, J. Biol. Chem. 251, 5027–5034.PubMedGoogle Scholar
  80. Wolk, C.P., Ernst, A. and Elhai, J. (1994) Heterocyst metabolism and development, in D. Bryant (ed.), The Molecular Biology of Cyanobacteria, Kluwer Academic Publishers, Dordrecht, pp. 769–823.Google Scholar
  81. Yoon, H-S and Golden, J.W. (1998) Heterocyst pattern formation controlled by a diffusible peptide, Science 282, 891–892.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. N. Rai
    • 1
  1. 1.Department of BiochemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations