Ecology of Phototrophic Sulfur Bacteria

  • Hans Van Gemerden
  • Jordi Mas
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 2)


Phototrophic sulfur bacteria often form mass developments in aquatic environments, either planktonic or benthic, where anoxic layers containing reduced sulfur compounds are exposed to light. This chapter summarizes a number of reports from the literature, collecting the information on the abundance of these bacteria as well as on their contribution to primary production. From the point of view of population dynamics, the abundance of these organisms is the consequence of a certain balance between growth and losses. Both specific growth rates, and specific rates of loss through several processes are analyzed in several environments, in an attempt to generalize on the growth status of blooms of phototrophic sulfur bacteria. The information available indicates the existence of an upper limit for the production of these bacteria in nature, and seems to suggest the existence of an upper limit for biomass based in the balance between growth and losses.

The chapter also reviews the main variables affecting growth of phototrophic sulfur bacteria in nature, paying attention both to the in situ status of these variables and to the functional response of the organisms to each of them. All of this information is integrated in a section in which several case-studies are described, and which emphasizes the role fluctuations play on competition and coexistence between different phototrophic sulfur bacteria.


3-MPA - 3-mercapto propionate A - affinity BChl - bacteriochlorophyll D - dilution rate DMDS - dimethyl disulfide DMS - dimethyl sulfide DMSO - dimethyl sulfoxide DMSP - dimetyl sulfonio propionate Ks - saturation constant MSH - methanethiol RuBisCO - ribulose bisphosphate carboxylate Y - yield factor μ - specific growth rate; μ - maximum specific growth rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abellè CA, Montesinos E and Turet J (1985) Colonization and dynamics of phototrophic bacteria in a recently formed lagoon in Banyoles karstic area (Girona, Spain). Scient Gerund 10: 33–49Google Scholar
  2. Aizenshtat Z, Stoler A, Cohen Y and Nielsen H (1983) The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar Lake. In: Bjoroy M, Albrecht P, Cornford C, de Groot K, Eglington G, Galimov E Leythaeuser D, Pelet R, Rullkotter J and Speers G (eds) Advances in Organic Geochemistry, pp 279–288. Wiley, ChicesterGoogle Scholar
  3. Anagnostidis K and Overbeck J (1966) Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur okölogischen Biocönotik der Gewässermikroorganismen. Ber Dtsch Bot Ges 79: 163–174Google Scholar
  4. Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 1–21. Alan R. Liss Inc., New YorkGoogle Scholar
  5. Baker AL, Kromer Baker K and Tyler PA (1985) Fine-layer depth relationships of lakewater chemistry, planktonic algae and photosynthetic bacteria in meromictic Lake Fidler, Tasmania. Freshwater Biol 15: 735–747Google Scholar
  6. Banens RJ (1990) Occurrence of hypolimnetic blooms of the purple sulfur bacterium, Thiopedia rosea, and the green sulfur bacterium, Chlorobium limicola, in an Australian Reservoir. Aust J Mar Freshwater Res 41: 223–235CrossRefGoogle Scholar
  7. Beeftink HH and Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167CrossRefGoogle Scholar
  8. Bergstein T, Henis Y and Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Ca. J Microbiol 25: 999–1007Google Scholar
  9. Beudeker RF, Gottschal JC and Kuenen JG (1982) Reactivity versus flexibility in thiobacilli. Antonie van Leeuwenhoek 48: 39–51CrossRefPubMedGoogle Scholar
  10. Biebl H and Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117: 9–16CrossRefGoogle Scholar
  11. Bogorov LV (1974) About the properties of Thiocapsa roseopersicina strain BBS, isolated from the estuary of the White Sea. Microbiology (Transl) 43: 275–280Google Scholar
  12. Broch-Due M, Ormerod JG and Fjerdingen BS (1978) Effect of light intensity on vesicle formation in Chlorobium. Arch Microbiol 116: 269–274CrossRefPubMedGoogle Scholar
  13. Caldwell DE and Tiedje JM (1975) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21: 377–385PubMedGoogle Scholar
  14. Castenholz RW (1984) Composition of hot spring microbial mats: a summary. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 101–119. Alan R. Liss Inc., New YorkGoogle Scholar
  15. Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 243–255. Plenum Press, New YorkGoogle Scholar
  16. Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Can J Microbiol 30: 273–284Google Scholar
  17. Caumette P (1989) Ecology and general physiology of anoxygenic phototrophic bacteria in benthic environments. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 283–304. ASM, Washington DCGoogle Scholar
  18. Caumette P, Pagano M and Saint-Jean L (1983) Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en baie du Biétrie (lagune Ebrié, Cote ďIvoire). Hydrobiologia 106: 135–148CrossRefGoogle Scholar
  19. Clarke KJ, Finlay BJ, Vicente E, Lloréns H and Miracle MR (1993) The complex life-cycle of a polymorphic prokaryote epibiont of the photosynthetic bacterium Chromatium weissei. Arch Microbiol 159: 498–505CrossRefGoogle Scholar
  20. Cloern JE, Cole BE and Oremland RS (1983a) Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, USA). Hydrobiologia 105:, 195–206CrossRefGoogle Scholar
  21. Cloern JE, Cole BE and Oremland RS (1983b) Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol Oceanogr 28: 1049–1061Google Scholar
  22. Cohen Y, Krumbein WE and Shilo M (1977) Solar Lake (Sinai). 3. Bacterial distribution and production. Limnol Oceanogr 22: 621–634Google Scholar
  23. Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 89–110. The Antioch Press, Yellow Springs, OhioGoogle Scholar
  24. Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cellular Comp Physiol 49: 25–68Google Scholar
  25. Croome RL (1986) Biological studies of meromictic lakes. In: De Deckker P and Williams WD (eds) Limnology in Australia, pp 113–130. CSIRO, MelbourneGoogle Scholar
  26. Culver DA and Brunskill GJ (1969) Fayetteville Green Lake, New York. V. Studies ofprimary production and zooplankton in a meromictic marl lake. Limnol Oceanogr 14: 862–873Google Scholar
  27. Czeczuga B (1965) Chlorobium limicola Nads. (Chlorobiaceae) and the distribution of chlorophyll in some lakes of the Mazur lake district. Hydrobiologia 25: 412–423CrossRefGoogle Scholar
  28. Czeczuga B (1966) An attempt to determine the primary production of the green sulphur bacteria, Chlorobium limicola Nads, (Chlorobacteriaceae). Hydrobiologia 31: 317–333Google Scholar
  29. Czeczuga B (1968) Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobiaceae). Photosynthetica (Prague) 2: 11–15Google Scholar
  30. Chen KY and Gupta K (1972) Kinetics of oxidation of aqueous sulfide by O2 Environ Sci Tech 6: 529–537Google Scholar
  31. D’Amelio ED, Cohen Y and Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities, pp 97–113. ASM, Washington DCGoogle Scholar
  32. De Wit R (1989) Interactions between phototrophic bacteria in marine sediments. Ph.D. Thesis, University of Groningen, The NetherlandsGoogle Scholar
  33. De Wit R and Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126Google Scholar
  34. De Wit R and Van Gemerden H (1990) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464CrossRefGoogle Scholar
  35. De Wit R and Van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76Google Scholar
  36. De Wit R, Jonkers HM, Van den Ende FP and Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23: 271–281Google Scholar
  37. Dickman M and Artuz I (1978) Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea Nature 275:, 191–195CrossRefGoogle Scholar
  38. Drews G and Imhoff JF (1991) Phototrophic sulfur bacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 51–97. Academic Press, LondonGoogle Scholar
  39. Dubinina GA and Kuznetsov SI (1976) The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). Int Revue ges Hydrobiol 61: 1–19Google Scholar
  40. Dubinina GA, Gorlenko VM and Suleimanov YI (1973) A study of microorganisms involved in the circulation of manganese, iron, and sulfur in meromictic Lake Gek-Gel. Mikrobiologiya 42: 918–924Google Scholar
  41. Dubinsky Z and Berman T (1979) Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel). Limnol Oceanogr 24: 652–663Google Scholar
  42. Dutton PL and Prince RC (1978) Reaction-center-driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK and Systrom WR (eds) The photosynthetic bacteria, pp 525–570. Plenum Press, New YorkGoogle Scholar
  43. Dyer BD, Gaju N, Pedrós-Alió C, Esteve I and Guerrero R (1986) Ciliates from a freshwater sulfuretum. Bio Systems, 19: 127–135PubMedGoogle Scholar
  44. Eisenthal R and Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139: 715–720PubMedGoogle Scholar
  45. Eloranta P (1985) Hypolimnetic chlorophyll maximum by algae and sulphur bacteria in one eutrophic pond. Arch Hydrobiol Suppl 71: 459–169Google Scholar
  46. Esteve I, Guerrero R, Montesinos I and Abellè C (1983) Electron microscopy study of the interaction of epibiontic bacteria with Chromalium minus in natural habitats. Microbial Ecol 9: 57–64CrossRefGoogle Scholar
  47. Esteve I, Gaju N, Mir J and Guerrero R (1992) Comparison of techniques to determine the abundance of predatory bacteria attacking Chromatiaceae. FEMS Microbiol Ecol 86: 205–211CrossRefGoogle Scholar
  48. Finlay BJ, Clarke KJ, Vicente E and Miracle MR (1991) Anaerobic ciliates from a sulphide-rich solution lake in Spain. Europ J Protistol 27: 148–159Google Scholar
  49. Folt CL, Wevers MJ, Yoder-Williams MP and Howmiller RP (1989) Field study comparing growth and viability of phototrophic bacteria. Appl Environ Microbiol 55: 78–85PubMedGoogle Scholar
  50. Fry B (1986) Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York state. Limnol Oceanogr 31: 79–88PubMedGoogle Scholar
  51. Fuller RC (1978) Photosynthetic carbon metabolism in the green and purple bacteria. In: Clayton RK and Systrom WR (eds) The photosynthetic bacteria, pp 691–705. Plenum Press, New YorkGoogle Scholar
  52. García-Cantizano J (1992) Analisis funcional de la comunidad microbiana en ecosistemas planctónicos. PhD Thesis. Autonomous University of Barcelona. SpainGoogle Scholar
  53. Garcia-Gil LJ and Abellà CA (1992a) Population dynamics of phototrophic bacteria in three basins of Lake Banyoles (Spain). Hydrobiologia 243/244: 87–94CrossRefGoogle Scholar
  54. García-Gil LJ and Abellà CA (1992b) Microbial ecology of planktonic filamentous phototrophic bacteria in holomictic freshwater lakes. Hydrobiologia 243/244: 79–86Google Scholar
  55. Gasol JM, Guerrero R and Pedrós-Alió C (1991) Seasonal variations in size structure and procaryotic dominance in sulfurous Lake Cisó. Limnol Oceanogr 36: 860–872Google Scholar
  56. Gübel F (1978) Quantum efficiencies of growth. In: Clayton RK and Systrom WR (eds) The Photosynthetic Bacteria, pp 907–925. Plenum Press, New YorkGoogle Scholar
  57. Goehle KH and Storr JF (1978) Biological layering resulting from extreme meromictic stability, Devil’s Hole, Abaco Island, Bahamas. Verh Internat Verein Limnol 20: 550–555Google Scholar
  58. Gorlenko VM (1974) The oxidation of thiosulfate by Amoebobacter roseus in the dark under microaerophilic conditions. Microbiology (Transl) 43: 624–625Google Scholar
  59. Gorlenko VM and Kusnezow SI (1972) Über die photosynthesierenden bakterien des Kononjer-Sees. Arch Hydrobiol 70: 1–13Google Scholar
  60. Gorlenko VM, Chebotarev EN and Kachalkin VI (1973) Microbiological processes of oxidation of hydrogen sulfide in the Repnoe Lake (Slavonic lakes). Mikrobiologiya 42: 723–728Google Scholar
  61. Gorlenko VM, Chebotarev EN and Kachalkin VI (1974a) Participation of microorganisms in the circulation of sulfur in Pomyaretskoe Lake. Mikrobiologiya: 908–914Google Scholar
  62. Gorlenko VM, Chebotarev EN and Kachalkin VI (1974b) Microbial oxidation of hydrogen sulfide in Lake Veisovo (Slavyansk Lake). Mikrobiologiya 43: 530–534Google Scholar
  63. Gorlenko VM, Vainstein MB and Kachalkin VI (1978) Microbiological characteristic of Lake Mogilnoye. Arch Hydrobiol 81: 475–492Google Scholar
  64. Gorlenko VM, Dubinina GA and Kuznetsov SI (1983) The ecology of aquatic micro-organisms E. Schweizeizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  65. Gottschal JC (1986) Mixed substrate utilization by mixed cultures. In: Leadbetter ER and Poindexter JS (eds) Bacteria in Nature, Vol 2, pp 261–292. Plenum Press, New YorkGoogle Scholar
  66. Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, Van Gemerden H, Hofman PAG and Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931Google Scholar
  67. Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D and Margulis L (1986) Predatory prokaryotes: Predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83: 2138–2142PubMedGoogle Scholar
  68. Guhl BE and Finlay BG (1993) Anaerobic predatory ciliates track seasonal migrations of planktonic photosynthetic bacteria. FEMS Microbiol Lett 107: 313–316Google Scholar
  69. Hall KJ and Northcote TG (1990) Production and decomposition processes in a saline meromictic lake. Hydrobiologia, 197: 115–128CrossRefGoogle Scholar
  70. Hansen TA (1974) Sulfide als electrondonor voor Rhodo-spirillaceae. PhD Thesis, University of Groningen, The NetherlandsGoogle Scholar
  71. Hansen TA and Van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56CrossRefPubMedGoogle Scholar
  72. Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5: 287–293CrossRefGoogle Scholar
  73. Hurlbert RE (1967) Effect of oxygen on viability and substrate utilization in Chromatium. J Bacteriol 93: 1346–1352PubMedGoogle Scholar
  74. Hurlbert RE and Lascelles J (1963) Ribulose diphosphate carboxylase in Thiorhodaceae. J Gen Microbiol 33: 445–458PubMedGoogle Scholar
  75. Hutchinson GE (1957) A treatise on limnology. I. Geography, physics and chemistry of lakes. Wiley, New YorkGoogle Scholar
  76. Iwakuma T and Yasuno M (1983) A comparison of several mathematical equations describing photosynthesis-light curve for natural phytoplankton populations. Arch Hydrobiol 97: 208–226Google Scholar
  77. Jassby AD and Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21: 540–547Google Scholar
  78. Javor BJ and Castenholz RW (1981) Laminated microbial mats Laguna Guerrero Negro, Mexico. Geomicrobiol J 2: 237–274Google Scholar
  79. Javor BJ and Castenholz RW (1984) Productivity studies of microbial mats Laguna Guerrero-Negro Mexico. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 149–170. Alan R. Liss Inc., New YorkGoogle Scholar
  80. Jørgensen BB (1977) The sulphur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22: 814–832Google Scholar
  81. Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic-oxic interface. Phil Trans R Soc London. 298: 543–561Google Scholar
  82. Jørgensen BB and Des Marais DJ (1986a) A simple fiber-optic microprobe for high resolution light measurements: applications in marine sediments. Limnol Oceanogr 31: 1374–1381Google Scholar
  83. Jørgensen BB and Des Marais DJ (1986b) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol. 38: 179–186CrossRefPubMedGoogle Scholar
  84. Jørgensen BB and Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33: 99–113PubMedGoogle Scholar
  85. Jørgensen BB, Kuenen J G and Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24: 799–822Google Scholar
  86. Jørgensen BB, Revsbech NP and Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28: 1075–1093Google Scholar
  87. Jørgensen BB, Fossing H, Wirsen CO and Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Research 38: 1083–1103Google Scholar
  88. Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135Google Scholar
  89. Kämpf C and Pfennig N (1986a) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and C. vinosum in the dark at various O2-concentrations. J Basic Microbiol 26: 517–531Google Scholar
  90. Kämpf C and Pfennig N (1986b) Isolation and characterization of some Chemoautotrophic Chromatiaceae. J Basic Microbiol 26: 507–515Google Scholar
  91. Keller MD, Bellows WK and Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES and Cooper WJ (eds) Biogenic Sulfur in the Environment, pp 167–182. American Chemical Society Symp. Ser. 393, Washington DCGoogle Scholar
  92. Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc London 298: 499–528Google Scholar
  93. Kiene RP and Taylor BF (1988a) Biotransformations of organosulfur compounds in sediments via 3-mercapto-propionate. Nature 332: 148–150CrossRefGoogle Scholar
  94. Kiene RP and Taylor BF (1988b) Demethylation of dimethyl-sulfoniopropionate and production of thiols in anoxic marine sediments. Appl Environ Microbiol 54: 2208–2212PubMedGoogle Scholar
  95. Kiene RP and Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dymethyl-sulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53: 2426–2434PubMedGoogle Scholar
  96. Kiene RP, Malloy KD and Taylor BF (1990) Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Appl Environ Microbiol 56: 156–161PubMedGoogle Scholar
  97. Kohler H-P, Ahring G, Abella C, Ingvorsen K, Keweloh H, Laczko E, Stupperich E and Tomei F (1984) Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microbiol Lett 21: 279–289Google Scholar
  98. Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quayle JR (ed) Microbial Biochemistry (Int. Rev. of Biochemistry, Vol. 21, pp 117–175). Univ. Park Press, BaltimoreGoogle Scholar
  99. Kondratieva EN, Zhukov, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292CrossRefPubMedGoogle Scholar
  100. Kuenen GJ (1989) Comparative ecophysiology of the nonphototrophic sulfide-oxidizing bacteria. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 349–365. ASM, Washington DCGoogle Scholar
  101. Kuznetsov SI (1970) The microflora of lakes and its geochemical activities. University of Texas Press, AustinGoogle Scholar
  102. Lassen C, Ploug H and Jørgensen BB (1992) A fibre-optic scalar irradiance microsensor: Application for spectral light measurements in sediments. FEMS Microbiol Ecol 86: 247–254CrossRefGoogle Scholar
  103. Lawrence JR, Haynes RC and Hammer UT (1978) Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh Internat Verein Limnol 20: 201–207Google Scholar
  104. Lindholm T, Weppling K and Jensen HS (1985) Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verh Internat Verein Limnol 22: 2190–2194Google Scholar
  105. Lippert KD and Pfennig (1969) Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum Wachstum and CO2-Fixierung. Arch Mikrobiol 65: 29–47CrossRefPubMedGoogle Scholar
  106. Lord III CJ and Church TM (1983) The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim Cosmochim Acta 47: 1381–1391CrossRefGoogle Scholar
  107. Luther III GW and Church TM (1988) Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Mar Chem 23: 295–309CrossRefGoogle Scholar
  108. Luther III FW, Church TM, Scudlark JR and Cosman M (1986) Inorganic and organic sulfur cycling in salt-marxh pore waters. Science 232: 746–749Google Scholar
  109. Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315Google Scholar
  110. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 39–111. Wiley-Liss, New YorkGoogle Scholar
  111. Mas J, Pedrós-Alió C and Guerrero R (1990) In situ specific loss and growth rates of purple sulfur bacteria in Lake Cisó. FEMS Microbiol Ecol 73: 271–281CrossRefGoogle Scholar
  112. Mas J and Van Gemerden H (1992) Phosphate-limited growth of Chromatium vinosum in continuous culture. Arch Microbiol 157: 135–140Google Scholar
  113. Massana R, Gasol JM, Jürgens K and Pedrós-Alió C. submitted. Impact of Daphnia pulex on a metalimnetic microbial community. J Plankton Res 16: 1379–1399Google Scholar
  114. Matheron R (1976) Contribution à ľétude écologique systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées des sédiments marins. Ph.D. Thesis. University Aix-Marseille III, FranceGoogle Scholar
  115. Matsuyama M (1978) Limnological aspects of meromictic Lake Suigetsu: its environmental conditions and biological metabolism. Bull Fac Fish Nagasaki Univ. 44: 1–65Google Scholar
  116. Matsuyama M (1981) Comparative aspects of a small coastal lake, Kaiike, on Kamikoshiki Island, Southern Kyushu, Japan. Verh Internat Verein Limnol 21: 979–986Google Scholar
  117. Matsuyama M (1987) A large phototrophic bacterium densely populating the O2−H2S interface of Lake Kaiike on Kamikoshiki Island, Southwest Japan Acta Acad Aboensis 47: 29–43Google Scholar
  118. Matsuyama M and Shirouzu E (1978) Importance of photosynthetic sulfur bacteria, Chromatium sp. as an organic matter producer in Lake Haiike. Jap J Limnol 39: 103–111Google Scholar
  119. Mazumder A and Dickman MD (1989) Factors affecting the spatial and temporal distribution of phototrophic sulfur bacteria. Arch Hydrobiol 116: 209–226Google Scholar
  120. Millero FJ (1991) The oxidation of sulfide in Black Sea waters. Deep Sea Res 38: 1139–1150Google Scholar
  121. Mir J, Martínez-Alonso M, Esteve I and Guerrero R (1991) Vertical stratification and microbial assemblage of a microbial mat in the Ebro Delta (Spain). FEMS Microbiol Ecol 86: 59–68CrossRefGoogle Scholar
  122. Miracle MR and Vicente E (1985) Phytoplankton and photosynthetic sulphur bacteria production in the meromictic coastal lagoon of Cullera (Valencia, Spain). Verh Internat Verein Limnol 22: 2214–2220Google Scholar
  123. Mitchell JG, Martínez-Alonso M, Lalucat J, Esteve I and Brown S (1991) Velocity changes, long runs and reversals in the Chromatium minus swimming response. J Bacteriol 173: 997–1003PubMedGoogle Scholar
  124. Montesinos E (1982) Ecofisiología de la fotosíntesis bacteriana. Ph.D. thesis. Autonomous University of Barcelona, SpainGoogle Scholar
  125. Montesinos E (1987) Change in size of Chromatium minus cells in relation to growth rate, sulfur content, and photosynthetic activity: A comparison of pure cultures and field populations. Appl Environ Microbiol 53: 864–871PubMedGoogle Scholar
  126. Montesinos E and Esteve I (1984) Effect of algal shading on the net growth and production of phototrophic sulfur bacteria in lakes of the Banyoles karstic area. Verh Int Verein Limnol 22: 1102–1105Google Scholar
  127. Montesinos E and Van Gemerden H (1986) The distribution and metabolism of planktonic phototrophic bacteria. In: Megusar F and Gantar M (eds) Perspectives in Microbial Ecology, pp 344–359. Slovene Society for Microbiology, LjubljanaGoogle Scholar
  128. Montesinos E, Guerrero R, Abellà C and Esteve I (1983) Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 46: 1007–1016PubMedGoogle Scholar
  129. Nicholson JAM, Stolz JF and Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364CrossRefGoogle Scholar
  130. Ormerod JG and Sirevág R (1983) Essential aspects of carbon metabolism. In: Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light, pp 100–119. Blackwell Scientific Publications, OxfordGoogle Scholar
  131. Overmann J and Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67CrossRefGoogle Scholar
  132. Overmann J and Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquatic Sciences 51: 262–278CrossRefGoogle Scholar
  133. Overmann J, Beatty JT, Hall KJ, Pfennig N and Northcote TO (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36: 846–859Google Scholar
  134. Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155Google Scholar
  135. Parker RD and Hammer UT (1983) A study of the Chromatiaceae in a saline meromictic lake in Saskatchewan, Canada. Int Revue ges Hydrobiol. 68: 839–851Google Scholar
  136. Parker RD, Lawrence JR and Hammer UT (1983) A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105: 53–61CrossRefGoogle Scholar
  137. Parkin TB and Brock TD (1980a) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25: 711–718Google Scholar
  138. Parkin TB and Brock TD (1980b) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125: 19–27CrossRefGoogle Scholar
  139. Parkin TB and Brock TBD (1981) Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch Hydrobiol 91: 366–382Google Scholar
  140. Pedrós-Alió C and Guerrero R (1993) Microbial ecology in Lake Cisó. Adv. Microb Ecol 13: 155–209Google Scholar
  141. Pedrós-Alió C and Sala MM (1990) Microdistribution and diel vertical migration of flagellated vs. gas-vacuolate purple sulfur bacteria in a stratified water body. Limnol Oceanogr 35: 1637–1644Google Scholar
  142. Pedrós-Alió C, Mas J, Gasol J M and Guerrero R (1989) Sinking speeds of free-living phototrophic bacteria determined with covered and uncovered traps. J Plankton Res 11: 887–905Google Scholar
  143. Pfennig N (1965) Anreicherungskulturen für rote and grüne Schwefelbakterien. Zentr Bakteriol Parasitenk Abt I, Suppl I: 179–189Google Scholar
  144. Pfennig N (1970) Dark growth of phototrophic bacteria under microaerophilic conditions. J Gen Microbiol 61: iGoogle Scholar
  145. Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Systrom WR (eds) The photosynthetic Bacteria, pp 3–18. Plenum Press, New YorkGoogle Scholar
  146. Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG and Bowien B. Autotrophic bacteria. Springer Verlag, New York pp 97–116Google Scholar
  147. Pfennig N and Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55: 245–256CrossRefGoogle Scholar
  148. Pfennig N and Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes (2nd ed), pp 3200–3231. Springer Verlag, New YorkGoogle Scholar
  149. Pierson BK, Oesterle A and Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376CrossRefGoogle Scholar
  150. Reed RH (1983) Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine microalgae. Mar Biol Lett 4: 173–178Google Scholar
  151. Repeta DJ, Simpson DJ, Jørgensen BB and Jannasch HW (1989) Evidence for the existence of anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342: 69–72CrossRefPubMedGoogle Scholar
  152. Revsbech NP and Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48: 270–275PubMedGoogle Scholar
  153. Revsbech NP, Christensen PB and Nielsen LP (1989) Microelectrode analysis of photosynthetic and respiratory processes in microbial mats. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 153–162. ASM, Washington DCGoogle Scholar
  154. Roelofsen PA (1935) On the metabolism of the purple sulphur bacteria. Kon Ned Acad Wet 37: 660–669Google Scholar
  155. Romanenko VI, Peres Eiris M, Kudryavtsev VM and Pubienes MA (1976) Microbiological processes in meromictic Lake Vae de San Juan, Cuba. Mikrobiologiya 45: 539–546Google Scholar
  156. Sahl HG and Trüper HG (1970) Enzymes of CO2 fixation in Chromatiaceae. FEMS Microbiol Lett 2: 129–132Google Scholar
  157. Schaub BEM and Van Gemerden H (1993) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 13: 185–196Google Scholar
  158. Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum and Chlorobium limicola. PhD Thesis, University of Bonn, GermanyGoogle Scholar
  159. Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31CrossRefGoogle Scholar
  160. Smith NA and Kelly DP (1988) Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134: 1407–1417Google Scholar
  161. Sorokin YI (1964) On the primary production and bacterial activities in the Black Sea. Journal du Conseil 29: 41–60Google Scholar
  162. Sorokin YI (1972) The bacterial population and the processes of hydrogen sulphide oxidation in the Black Sea. Journal du Conseil 34: 423–454Google Scholar
  163. Sorokin YI (1970) Interrelations between sulfur and carbon turnover in leromictic lakes. Arch Hydrobiol 66: 391–446Google Scholar
  164. Sorokin YI and Donato N (1975) On the carbon and sulfur metabolism in the meromictic Lake Faro (Sicily) Italy. Hydrobiologia 47: 241–252Google Scholar
  165. Stal LJ, Van Gemerden H and Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2: 295–306CrossRefGoogle Scholar
  166. Steenbergen CLM (1982) Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95: 59–64Google Scholar
  167. Steenbergen CLM and Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol Oceanogr 27: 883–895Google Scholar
  168. Steenbergen CLM, Korthals HJ and Van Nes M (1987) Ecological observations on phototrophic sulfur bacteria and the role of these bacteria in the sulfur cycle of monomictic Lake Vechten (The Netherlands). Acta Acad Aboensis 47: 97–115Google Scholar
  169. Steenbergen CLM, Korthals HJ, Baker AL and Watras CJ (1989) Microscale vertical distribution of algal and bacterial plankton in Lake Vechten (The Netherlands). FEMS Microbiol Ecol 62: 209–220CrossRefGoogle Scholar
  170. Stefels J and Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Progr Ser. 97: 11–18Google Scholar
  171. Steudel R (1989) On the nature of the ‘elemental sulfur’ (S0) produced by sulfur-oxidizing bacteria — A model for S0 globules. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 289–303. Springer Verlag, New YorkGoogle Scholar
  172. Steudel R, Holdt G, Visscher PT and Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153: 432–437CrossRefGoogle Scholar
  173. Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: I. Methods of in situ study of the laminated sediments. Precambrian Res. 20: 479–492CrossRefGoogle Scholar
  174. Stolz JF (1990) Distribution of phototrophic microbes in the flat microbial mat at Laguna Figueroa, Baja California, Mexico. Biosystems 23: 345–358CrossRefPubMedGoogle Scholar
  175. Takahashi M and Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanogr 13: 644–655Google Scholar
  176. Takahashi M and Ichimura S (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15: 929–944Google Scholar
  177. Takahashi M, Shiokawa R and Ichimura S (1972) Photosynthetic characteristics of a purple sulfur bacterium grown under different light intensities. Can J Microbiol 18: 1825–1828PubMedGoogle Scholar
  178. Taylor PA and Williams PJ LeB (1975) Theoretical studies on the coexistence of competing species under controlled flow conditions. Can J Microbiol 21: 90–98PubMedGoogle Scholar
  179. Tiedje JM, Sexstone AG, Myrold DM and Robinson JA (1982) Denitriflcation: ecological niches, competition and survival. Antonie van Leeuwenhoek 48: 569–583PubMedGoogle Scholar
  180. Tilzer MM (1984) Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J Plankton Res 6: 309–324Google Scholar
  181. Trüper HG (1981) Versatility of carbon metabolism in the phototrophic bacteria. In: Dalton H (ed) Microbial Growth on C1 Compounds, pp 116–121. Heyden and Son, LondonGoogle Scholar
  182. Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A and Krebs B (eds) Studies in Inorganic Chemistry, Vol 5, Sulfur, Its Significance for the Geo-, Bio-and Cosmosphere and Technology, pp 367–382. Elsevier, AmsterdamGoogle Scholar
  183. Trüper HG and Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulfate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek 32: 261–276CrossRefPubMedGoogle Scholar
  184. Van den Ende FP and Van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78Google Scholar
  185. Van Gemerden H (1968) Growth measurements of Chromatium cultures. Arch Mikrobiol 64: 103–110PubMedGoogle Scholar
  186. Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microb Ecol 1: 104–119Google Scholar
  187. Van Gemerden H (1980) Survival of Chromatium vinosum at low light intensities. Arch Microbiol 125: 115–121CrossRefGoogle Scholar
  188. Van Gemerden H (1983) Physiological ecology of purple and green bacteria. Ann Microbiol (Inst. Pasteur) 134: 73–92Google Scholar
  189. Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139: 289–294CrossRefGoogle Scholar
  190. Van Gemerden H (1986) Production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146: 52–56CrossRefGoogle Scholar
  191. Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: Role of sulfide, sulfur and polysulfides. Acta Acad Aboensis 47: 13–27Google Scholar
  192. Van Gemerden H (1990) Immobilized anoxygenic phototrophic bacteria in tidal areas. J de Bont, J Visser and J Tramper (eds) Physiology of immobilized cells. Elsevier, Amsterdam pp 37–48Google Scholar
  193. Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113: 3–25Google Scholar
  194. Van Gemerden H and Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119: 135–143CrossRefGoogle Scholar
  195. Van Gemerden H and Beeftink HH (1981) Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture. Arch Microbiol 129: 32–34Google Scholar
  196. Van Gemerden H and Beeftink HH (1983) Ecology of phototrophic bacteria. In: Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light, pp 146–185. Blackwell Scientific Publications, OxfordGoogle Scholar
  197. Van Gemerden H and Jannasch HW (1971) Continuous culture of Thiorhodaceae. Arch Mikrobiol 79: 345–353CrossRefPubMedGoogle Scholar
  198. Van Gemerden H, Montesinos E, Mas J and Guerrero R (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol Oceanogr 30: 932–943Google Scholar
  199. Van Gemerden H, De Wit R, Tughan CS and Herbert RA (1989a) Development of mass blooms of Thiocapsa roseopersicina on sheltered beaches on the Orkney Islands. FEMS Microbiol Ecol 62: 111–118Google Scholar
  200. Van Gemerden H, Tughan CS, De Wit R and Herbert RA (1989b) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62: 87–102Google Scholar
  201. Van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Mikrobiol 3: 1–112Google Scholar
  202. Van Niel CB (1955) Natural selection in the microbial world. J Gen Microbiol 13: 201–217Google Scholar
  203. Veldhuis MJW and Van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate, and light as limiting factors. FEMS Microbiol Ecol 38: 31–38CrossRefGoogle Scholar
  204. Vicente E and Miracle MR (1988) Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Verb Internat Verein Limnol 23: 522–529Google Scholar
  205. Vicente E, Rodrigo MA, Camacho A and Miracle MR (1991) Phototrophic prokaryotes in a karstic sulphate lake. Verh Internat Verein Limnol 24: 998–1004Google Scholar
  206. Visscher PT and Van Gemerden H (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 287–294. Plenum Press, New YorkGoogle Scholar
  207. Visscher PT and Van Gemerden H (1991a) Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57: 3237–3242PubMedGoogle Scholar
  208. Visscher PT and Van Gemerden H (1991b) Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett. 81: 247–250CrossRefGoogle Scholar
  209. Visscher PT and Van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of Global Change: Radiatively Active Trace Gases, pp 672–690. Chapman and Hall, New YorkGoogle Scholar
  210. Visscher PT, Nijburg JW and Van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81CrossRefGoogle Scholar
  211. Visscher PT, Quist P and Van Gemerden H (1991) Methylated sulfur compounds in microbial mats: In situ concentrations and metabolism by a colorless sulfur bacterium. Appl Environ Microbiol 57: 1758–1763PubMedGoogle Scholar
  212. Visscher PT, Van den Ende FP, Schaub BEM and Van Gemerden H (1992) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol Ecol 101: 51–58CrossRefGoogle Scholar
  213. Wetzel RG (1973) Productivity investigations of interconnected marl lakes (I). The eight lakes of the Oliver and Walters chains, northeastern Indiana. Hydrobiol Stud 3: 91–143Google Scholar
  214. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836CrossRefGoogle Scholar
  215. Yoon H, Klinzing G and Blanch HW (1977) Competition for mixed substrates by microbial populations. Biotechnol Bioeng, 19: 1193–1210CrossRefPubMedGoogle Scholar
  216. Zevenboom W (1980) Growth and nutrient uptake kinetics of Oscillatoria agardhii. PhD Thesis, University of Amsterdam, The NetherlandsGoogle Scholar
  217. Zeyer J, Eicher P, Wakeham SG and Schwarzenbach RP (1987) Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic sulfur bacteria. Appl Environ Microbiol 53: 2026–2032PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Hans Van Gemerden
    • 1
  • Jordi Mas
    • 2
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands
  2. 2.Department of Genetics and MicrobiologyAutonomous University of BarcelonaBellaterraSpain

Personalised recommendations