Advertisement

Dipeptidyl Peptidase IV Substrates

An update on in vitro peptide hydrolysis by human DPPIV
  • Ingrid De Meester
  • Anne-Marie Lambeir
  • Paul Proost
  • Simon Scharpé
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 524)

Conclusions

Many bioactive peptides qualify to be DPPIV substrates. Considering the ubiquitous presence of the enzyme - on cells, on vesicles, in fluids - it is hardly surprising that many of them are indeed found truncated in vivo. However, not all substrates are cleaved with the same efficiency. The molecular properties of DPPIV involved in substrate recognition are still poorly understood.

Keywords

Vasoactive Intestinal Peptide Pituitary Adenylate Cyclase Activate Polypeptide Bioactive Peptide Gastric Inhibitory Polypeptide Dipeptidyl Peptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yaron, A., Naider, F., 1993, Proline-dependent structural and biological properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol. 28: 31–81.PubMedGoogle Scholar
  2. 2.
    De Meester, I., Korom, S., Van Damme, J., et al., 1999, CD26, let it cut or cut it down. Immunol. Today, 20: 367–75.PubMedGoogle Scholar
  3. 3.
    Augustyns, K.., Bal, G., Thonus, G., et al., 1999, The unique properties of dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP IV inhibitors. Curr. Med Chem. 6: 311–27.PubMedGoogle Scholar
  4. 4.
    Kähne, T., Lendeckel, U., Wrenger, S., et al., 1999, Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int. J. Mol. Med. 4: 3–15.PubMedGoogle Scholar
  5. 5.
    Mentlein, R., 1999, Dipeptidyl-peptidase IV (CD26) — role in the inactivation of regulatory peptides. Regul. Pept. 85: 9–24.PubMedCrossRefGoogle Scholar
  6. 6.
    De Meester, I., Durinx, C., Bal, G., et al., 2000, Natural substrates of dipeptidyl peptidase IV. Adv. Exp. Med. Biol. 477: 67–87.PubMedGoogle Scholar
  7. 7.
    De Meester, I., Durinx, C., Proost, P., et al., 2002, DPIV — Natural Substrates of Medical Importance. In: Langner, J. and Ansorge, S., eds. Ectopeptidases. CD13/Aminopeptidase N and CD26/Dipeptidyl peptidase IV in Medicine and Biology. Pp 223–257. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  8. 8.
    Mentlein, R., Gallwitz, B., Schmidt, W.E., 1993, Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-l(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214: 829–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Deacon, C.F., Hoist, J.J., 2002, Dipeptidyl peptidase IV inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective. Biochem Biophys Res Commun. 294:1–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Demuth, H., Hinke, S., Pederson, R., McIntosh, C., 2002, Rebuttal to Deacon and Holst: “Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1” versus “Dipeptidyl peptidase inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective”. Biochem Biophys Res Commun. 296: 229.PubMedCrossRefGoogle Scholar
  11. 11.
    Rawlings, N.D., Polgar, L., Barrett, A.J., 1991, A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907–8.PubMedGoogle Scholar
  12. 12.
    Martin, R.A., Cleary, D.L., Guido, D.M., et al., 1993, Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP-IV substrate specificity? Biochim. Biophys. Acta 1164: 252–60PubMedGoogle Scholar
  13. 13.
    Pospisilik, J.A., Hinke, S.A., Pederson, R.A., et al. 2001, Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul. Pept. 96: 133–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Lambeir, A.M., Proost, P., Durinx, C., et al., 2001, Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J. Biol. Chem. 276: 29839–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Lambeir, A.M., Durinx, C., Proost, P., et al., 2001, Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. 507: 327–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Rahfeld, J., Schutkowski, M., Faust, J., et al., 1991, Extended investigation of the substrate specificity of dipeptidyl peptidase IV from pig kidney. Biol.Chem.Hoppe-Seyler 372: 313–18.PubMedGoogle Scholar
  17. 17.
    Bongers, J., Lambros, T., Ahmad, M., et al., 1992, Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim. Biophys. Acta, 1122: 147–53.PubMedGoogle Scholar
  18. 18.
    Püschel, G., Mentlein, R., Heymann, E., 1982, Isolation and characterization of dipeptidyl peptidase IV from human placenta. Eur. J. Biochem. 126: 359–65.PubMedGoogle Scholar
  19. 19.
    Hoffmann, T., Reinhold, D., Kähne, T., et al., 1995, Inhibition of dipeptidyl peptidase IV (DPPIV) by anti-DP IV antibodies and non-substrate X-X-Pro-oligopeptides ascertained by capillary electrophoresis. J. Chromatogr. A 716: 355–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Kikuchi, M., Fukuyama, K., Epstein, W.L., 1988, Soluble dipeptidyl peptidase IV from terminal differentiated rat epidermal cells: purification and its activity on synthetic and natural peptides. Arch. Biochem. Biophys. 266: 369–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer, G., Heins, J., Barth, A., 1983, The conformation around the peptide bond between the P1-and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim. Biophys. Acta 742: 452–62.PubMedGoogle Scholar
  22. 22.
    Reutter, W., Baum, O., Löster, K., et al., 1995, Functional aspects of the three extracellular domains of dipeptidyl peptidase IV: characterization of glycolysation events, of the collagen-binding site and of endopeptidase activity. In: Fleischer, B., eds. Dipeptidyl peptidase IV (CD26) in metabolism and the immune response. Pp 55–78. Heidelberg: Springer-Verlag.Google Scholar
  23. 23.
    Bauvois, B., 1995, Modulation and functional diversity of dipeptidyl peptidase IV in murine and human systems. In: Fleischer, B., eds. Dipeptidyl peptidase IV (CD26) in metabolism and the immune response. Pp 99–110. Heidelberg: Springer-Verlag.Google Scholar
  24. 24.
    Bermpohl, F., Löster, K., Reutter, W., et al., 1998, Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett. 428: 152–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hinke, S.A., Kühn-Wache, K., Hoffmann, T., et al., 2002, Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1. Biochem. Biophys. Res. Commun. 291: 1302–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Mentlein, R., Dahms, P., Grandt, D., et al., 1993, Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul. Pept. 49: 133–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Pauly, R.P., Rosche, F., Wermann, M., et al., 1996, Investigation of glucose-dependent insulinotropic polypeptide-(1–42) and glucagon-like peptide-1-(7–36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J.Biol.Chem. 271: 23222–9.PubMedGoogle Scholar
  28. 28.
    Lambeir, A.M., Proost, P., Scharpé, S. and De Meester, I., 2002, A kinetic study of Glucagon-like peptide 1 and Glucagon-like peptide 2 truncation by DPP IV, in vitro. Biochem. Pharmacol., in pressGoogle Scholar
  29. 29.
    Sherwood, N.M., Krueckl, S.L., McRory, J.E., 2000, The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr.Rev. 21: 619–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Drucker, D.J., Shi, Q., Crivici, A., et al., 1997, Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat.Biotechnol. 15: 673–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Frohman, L.A., Jansson, J.O., 1986, Growth hormone-releasing hormone. Endocr.Rev. 7: 223–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Brown, J.C., Dahl, M., Kwauk, S., et al., 1981, Actions of GIP. Peptides 1981; 2: 241–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Drucker, D.J., 2002, Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122: 531–44.PubMedGoogle Scholar
  34. 34.
    Hinke, S.A., Pospisilik, J.A., Demuth, H.U., et al., 2000, Dipeptidyl peptidase IV (DPIV/CD26) degradation of glucagon. Characterization of glucagon degradation products and DPIV-resistant analogs. J.Biol.Chem. 275: 3827–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Kieffer, T.J., McIntosh, C.H., Pederson, R.A., 1995, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Deacon, C.F., Nauck, M.A., Meier, J., et al., 2000, Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin.Endocrinol.Metab. 85: 3575–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Kühn-Wache, K., Manhardt, S., Rosche, F. et al., 1999, 2nd symposium on Cellular Peptidases in Immune Functions and Diseases, Magdeburg.Google Scholar
  38. 38.
    Nicole, P., Lins, L., Rouyer-Fessard, C., et al., 2000, Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J.Biol.Chem. 275: 24003–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Robberecht, P., Gourlet, P., de Neef, P., et al., 1992, Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. Eur.J.Biochem. 207: 239–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Yada, T., Sakurada, M., Ihida, K., et al., 1994, Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J.Biol.Chem. 269: 1290–3.PubMedGoogle Scholar
  41. 41.
    ĽHeureux, M.C., Brubaker, P.L., 2001, Therapeutic potential of the intestinotropic hormone, glucagon-like peptide-2. Ann.Med. 33: 229–35.Google Scholar
  42. 42.
    McDonald, T.J., Jornvall, H., Nilsson, G., et al., 1979, Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem.Biophys.Res.Commun. 90: 227–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Ferris, H.A., Carroll, R.E., Lorimer, D.L., et al., 1997, Location and characterization of the human GRP receptor expressed by gastrointestinal epithelial cells. Peptides, 18: 663–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Xiao, D., Wang, J., Hampton, L.L., et al., 2001, The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 264: 95–103.PubMedCrossRefGoogle Scholar
  45. 45.
    Horstmann, O., Nustede, R., Schmidt, W., et al., 1999, On the role of gastrin-releasing peptide in meal-stimulated exocrine pancreatic secretion. Pancreas 19: 126–32.PubMedGoogle Scholar
  46. 46.
    Jensen, R.T., Coy, D.H., Saeed, Z.A., et al., 1988, Interaction of bombesin and related peptides with receptors on pancreatic acinar cells. Ann.NY Acad.Sci. 547: 138–49PubMedGoogle Scholar
  47. 47.
    Karlsson, S., Sundler, F., Ahrén, B., 1998, Insulin secretion by gastrin-releasing peptide in mice: ganglionic versus direct islet effect. Am.J.Physiol. 274: E124–9.PubMedGoogle Scholar
  48. 48.
    Roberge, J.N., Gronau, K.A., Brubaker, P.L., 1996, Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology 137: 2383–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Karlsson, S., Sundler, F., Ahrén, B., 2001, Direct cytoplasmic CA(2+) responses to gastrin-releasing peptide in single beta cells. Biochem.Biophys.Res.Commun. 280: 610–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Persson, K., Gingerich, R.L., Nayak, S., et al., 2000, Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. Am.J.Physiol.Endocrinol.Metab. 279: E956–62.PubMedGoogle Scholar
  51. 51.
    Clive, S., Jodrell, D., Webb, D., 2001, Gastrin-releasing peptide is a potent vasodilator in humans. Clin.Pharmacol.Ther. 69: 252–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Heimbrook, D.C., Boyer, M.E., Garsky, V.M., et al., 1988, Minimal ligand analysis of gastrin releasing peptide. Receptor binding and mitogenesis. J.Biol.Chem. 263: 7016–9.PubMedGoogle Scholar
  53. 53.
    Zlotnik, A., Yoshie, O., 2000, Chemokines: a new classification system and their role in immunity. Immunity 12: 121–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Noso, N., Sticherling, M., Bartels, J., et al., 1996, Identification of an N-terminally truncated form of the chemokine RANTES and granulocyte-macrophage colonystimulating factor as major eosinophil attractants released by cytokine-stimulated dermal fibroblasts. J.Immunol 156: 1946–53.PubMedGoogle Scholar
  55. 55.
    Struyf, S., De Meester, I., Scharpé, S, et al., 1998, Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur.J.Immunol. 28: 1262–71.PubMedGoogle Scholar
  56. 56.
    Proost, P., De Meester, I., Schols, D., et al., 1998, Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-l-infection. J.Biol.Chem. 273: 7222–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Menten, P., Struyf, S., Schutyser, E., et al., 1999, The LD78beta isoform of MlP-l alpha is the most potent CCR5 agonist and HIV-l-inhibiting chemokine. J.Clin.lnvest. 104: R1–5.Google Scholar
  58. 58.
    Proost, P., Menten, P., Struyf, S., et al., 2000, Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 96: 1674–80.PubMedGoogle Scholar
  59. 59.
    Oravecz, T., Pall, M., Roderiquez, G., et al., 1997, Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J.Exp.Med. 186: 1865–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Proost, P., Schutyser, E., Menten, P., et al., 2001, Aminoterminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, whilst preserving antiangiogenic properties. Blood 98: 3554–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Ludwig, A., Schiemann, F., Mentlein, R., et al., 2002, Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J.Leukoc.Biol. 72: 183–91.PubMedGoogle Scholar
  62. 62.
    Delgado, M.B., Clark-Lewis, I., Loetscher, P., et al., 2001, Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. EurJ.Immunol 31: 699–707.CrossRefGoogle Scholar
  63. 63.
    McQuibban, G.A., Butler, G.S., Gong, J.H., et al., 2001, Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J.Biol.Chem. 276: 43503–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., et al., 2002, Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J.Biol.Chem. 277: 15677–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Schols, D., Proost, P., Struyf, S., et al., 1998, CD26-processed RANTES(3-68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Res. 39: 175–87.PubMedCrossRefGoogle Scholar
  66. 66.
    Simmons, G., Clapham, P.R., Picard, L., et al., 1997, Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276: 276–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Shioda, T., Kato, H., Ohnishi, Y., et al., 1998, Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1 alpha (SDF-1 alpha) and SDF-1 beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc.Natl.Acad.Sci.USA 95: 6331–6.PubMedGoogle Scholar
  68. 68.
    Proost, P., Struyf, S., Schols, D., et al., 1998, Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1 alpha. FEBS Lett. 432: 73–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Struyf, S., Menten, P., Lenaerts, J.P., et al., 2001, Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1 alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur.J.Immunol. 31: 2170–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Proost, P., Struyf, S., Schols, D., et al., 1999, Truncation of macrophage-derived chemokine by CD26/dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J.Biol.Chem. 274: 3988–93.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ingrid De Meester
    • 1
  • Anne-Marie Lambeir
    • 1
  • Paul Proost
    • 2
  • Simon Scharpé
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Rega Institute of Medical ScienceCatholic University of LeuvenLeuvenBelgium

Personalised recommendations