Advertisement

The Molecular Virology of HIV-1

  • Monty Montano
  • Carolyn Williamson

Keywords

Human Immunodeficiency Virus Long Terminal Repeat Molecular Virology Sooty Mangabey Human Immunodeficiency Virus Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunter E, Casey J, Hahn B, et al. Family Retroviridae. Virus Taxonomy-Seventh Periodical of the International Committee on Taxonomy of Viruses, 2001:369–387.Google Scholar
  2. 2.
    Rey-Cuille MA, Berthier JL, Bomsel-Demontoy MC, et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol, 1998;72(5):3872–3886.PubMedGoogle Scholar
  3. 3.
    Coffin JM. Retroviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM, et al., eds. Fields Virology. Philadelphia, New York: Lippincott-Raven Publishers, 1996:1767–1847.Google Scholar
  4. 4.
    Nathanson N, Hirsch VM, Mathieson BJ. The role of nonhuman primates in the development of an AIDS vaccine. AIDS, 1999;13(Suppl A):S113–S120.PubMedGoogle Scholar
  5. 5.
    Goldstein S, Ourmanov I, Brown CR, et al. Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus. J Virol, 2000;74(24):11744–11753.PubMedCrossRefGoogle Scholar
  6. 6.
    Beer BE, Bailes E, Sharp P, et al. A compilation and analysis of nucleic acid and amino acid sequences. In: Kuiken CL, Foley B, Hahn B, et al., eds. Diversity and Evolution of Primate Lentiviruses. Los Alamos, NM: Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 1999:460–474.Google Scholar
  7. 7.
    Peeters M, Sharp PM. Genetic diversity of HIV-1: the moving target, AIDS, 2000;14(Suppl3):S129–S1240.PubMedGoogle Scholar
  8. 8.
    Courgnaud V, Pourrut X, Bibollet-Ruche F, et al. Characterization of a novel simian immunodeficiency virus from guereza colobus monkeys (Colobus guereza) in Cameroon: a new lineage in the nonhuman primate lentivirus family. J Virol, 2001;75(2):857–866.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen Z, Telfier P, Gettie A, et al. Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J Virol, 1996;70(6):3617–3627.PubMedGoogle Scholar
  10. 10.
    Chen Z, Luckay A, Sodora DL, et al. Human immunodeficiency virus type 2 (HIV-2) seroprevalence and characterization of a distinct HIV-2 genetic subtype from the natural range of simian immunodeficiency virus-infected sooty mangabeys. J Virol, 1997;71(5):3953–3960.PubMedGoogle Scholar
  11. 11.
    Khabbaz RF, Heneine W, George JR, et al. Brief report: infection of a laboratory worker with simian immunodeficiency virus [see comments]. N Engl J Med, 1994;330(3):172–177.PubMedCrossRefGoogle Scholar
  12. 12.
    Gao F, Yue L, White AT, et al. Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature, 1992;358(6386):495–499.PubMedCrossRefGoogle Scholar
  13. 13.
    Sharp PM, Robertson DL, Hahn BH. Cross-species transmission and recombination of ‘AIDS’ viruses. Philos Trans R Soc Lond B Biol Sci, 1995;349(1327):41–47.PubMedGoogle Scholar
  14. 14.
    Simon F, Mauclere P, Roques P, et al. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med, 1998;9:1032–1037.Google Scholar
  15. 15.
    Zhu T, Korber BT, Nahmias AJ, et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic [see comments]. Nature, 1998;391(6667):594–597.PubMedGoogle Scholar
  16. 16.
    Korber B, Theiler J, Wolinsky S. Limitations of a molecular clock applied to considerations of the origin of HIV-1. Science, 1998;280(5371): 1868–1871.PubMedCrossRefGoogle Scholar
  17. 17.
    Robertson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal [letter]. Science, 2000;288(5463):55–56.PubMedCrossRefGoogle Scholar
  18. 18.
    Vidal N, Peeters M, Mulanga-Kabeya C, et al. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol, 2000;74(22): 10498–10507.PubMedCrossRefGoogle Scholar
  19. 19.
    Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes [see comments]. Nature, 1999;397(6718):436–441.PubMedCrossRefGoogle Scholar
  20. 20.
    Huet T, Cheynier R, Meyerhans A, et al. Genetic organization of a chimpanzee lentivirus related to HIV-1 [see comments]. Nature, 1990;345(6273):356–359.PubMedCrossRefGoogle Scholar
  21. 21.
    Vanden Haesevelde MM, Peeters M, Jannes G, et al. Sequence analysis of a highly divergent HIV-1-related lentivirus isolated from a wild captured chimpanzee. Virology, 1996;221(2):346–350.Google Scholar
  22. 22.
    Dickson D. Tests fail to support claims for origin of AIDS in polio vaccine [news]. Nature, 2000;407(6801): 117.PubMedCrossRefGoogle Scholar
  23. 23.
    Roy AL, Malik S, Meisterernst M, et al. An alternative pathway for transcription initiation involving TFII-I. Nature, 1993;365(6444):355–359.PubMedGoogle Scholar
  24. 24.
    Smale ST, Baltimore D. The Initiator as a transcription control element. Cell, 1989;57:103–113.PubMedCrossRefGoogle Scholar
  25. 25.
    Montano MA, Kripke K, Norina CD, et al. NF-kappa B homodimer binding within the HIV-1 initiator region and interactions with TFII-I. Proc Natl Acad Sci USA, 1996;93:12376–12381.PubMedCrossRefGoogle Scholar
  26. 26.
    Buratowski S. The Basics of Basal Transcription by RNA Polymerase II. Cell, 1994;77:5–8.CrossRefGoogle Scholar
  27. 27.
    Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature 1990 Mar 8;344(6262):178]. Nature, 1987;326(6114):711–713.PubMedCrossRefGoogle Scholar
  28. 28.
    Lenardo MJ, Baltimore D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell, 1989;58:227–229.PubMedCrossRefGoogle Scholar
  29. 29.
    Baeuerle PA, Baltimore D. IkB: A specific inhibitor of the NF-κB transcription factor. Science, 1988;242:540–546.PubMedGoogle Scholar
  30. 30.
    Montano MA, Novitsky VA, Blackard JT, et al. Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. J Virol, 1997;71(11):8657–8665.PubMedGoogle Scholar
  31. 31.
    Salminen MO, Johansson B, Sonnerborg A, et al. Full-length sequence of an ethiopian human immunodeficiency type 1 (HIV-1) isolate of genetic subtype C. AIDS Res Hum Retrovirus, 1996;12:1329–1339.CrossRefGoogle Scholar
  32. 32.
    Gao F, Robertson DL, Morrison SG, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol, 1996; 70:7013–7029.PubMedGoogle Scholar
  33. 33.
    Montano M, Nixon C, Essex M. Dysregulation through the NF-kB enhancer and TATA box of the HIV-1 subtype E promoter. J Virol, 1998;72(10):8446–8452.PubMedGoogle Scholar
  34. 34.
    Duh EJ, Maury WJ, Folks TM, et al. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA, 1989;86(15):5974–5978.PubMedGoogle Scholar
  35. 35.
    Osborn L, Kunkel S, Nabel G. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc. Natl. Acad. Sci. USA, 1989;86:2336–2340.PubMedGoogle Scholar
  36. 36.
    Montano MA, Nixon CP, Ndung’u T, et al. Elevated tumor necrosis factor-alpha activation of human immunodeficiency virus type 1 subtype C in southern Africa is associated with an NF-kappa B enhancer gain-of-function. J Infect Dis, 2000;181(1):76–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Antoni B, Rabson A, Kinter A, et al. NF-kappa Bdependent and-independent pathways of HIV activation in a chronically infected T cell line. Virology, 1994;202(2):684–694.PubMedCrossRefGoogle Scholar
  38. 38.
    Cullen BR, Greene WC. Regulatory pathways governing HIV-1 replication. Cell, 1989;58(3):423–426.PubMedCrossRefGoogle Scholar
  39. 39.
    Feinberg MB, Baltimore D, Frankel AD. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA, 1991;88(9):4045–4049.PubMedGoogle Scholar
  40. 40.
    Arya SK, Guo C, Josephs SF, et al. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science, 1985;229:69–73.PubMedGoogle Scholar
  41. 41.
    Sodroski J, Rosen C, Wong-Staal F, et al. Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science, 1985;227:171–173.PubMedGoogle Scholar
  42. 42.
    Dayton AI, Sodroski JG, Rosen CA, et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell, 1986;44(6):941–947.PubMedCrossRefGoogle Scholar
  43. 43.
    Fisher AG, Feinberg MB, Josephs SF, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature, 1986;320(6060):367–371.PubMedCrossRefGoogle Scholar
  44. 44.
    Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol, 1993;67(1):277–287.PubMedGoogle Scholar
  45. 45.
    Borgatti P, Zauli G, Cantley LC, et al. Extracellular HIV-1 Tat protein induces a rapid and selective activation of protein kinase C (PKC)-alpha, and-epsilon and-zeta isoforms in PC12 cells. Biochem Biophys Res Commun, 1998;242(2):332–337.PubMedCrossRefGoogle Scholar
  46. 46.
    Zauli G, Previati M, Caramelli E, et al. Exogenous human immunodeficiency virus type-1 Tat protein selectively stimulates a phosphatidylinositol-specific phospholipase C nuclear pathway in the Jurkat T cell line. Eur J Immunol, 1995;25(9):2695–2700.PubMedGoogle Scholar
  47. 47.
    Gibellini D, Caputo A, Capitani S, et al. Upregulation of c-Fos in activated T lymphoid and monocytic cells by human immunodeficiency virus-1 Tat protein. Blood, 1997;89(5): 1654–1664.PubMedGoogle Scholar
  48. 48.
    Kumar A, Manna SK, Dhawan S, et al. HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J Immunol, 1998;161(2):776–781.PubMedGoogle Scholar
  49. 49.
    Conant K, Ma M, Nath A, et al. Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NFkappa B binding and protein kinase C activity in primary human astrocytes. J Virol, 1996;70(3):1384–1389.PubMedGoogle Scholar
  50. 50.
    Ott M, Lovett JL, Mueller L, et al. Superinduction of IL-8 in T cells by HIV-1 Tat protein is mediated through NF-kappa B factors. J Immunol, 1998; 160(6):2872–2880.PubMedGoogle Scholar
  51. 51.
    Ambrosino C, Ruocco MR, Chen X, et al. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem, 1997;272(23): 14883–14892.PubMedCrossRefGoogle Scholar
  52. 52.
    Huang L, Bosch I, Hofmann W, et al. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol, 1998;72(11):8952–8960.PubMedGoogle Scholar
  53. 53.
    Frankel AD. Peptide models of Tat-TAR protein-RNA interaction. Protein Science, 1992;1:1539–1542.PubMedCrossRefGoogle Scholar
  54. 54.
    Wei P, Garber ME, Fang SM, et al. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell, 1998;92(4):451–462.PubMedCrossRefGoogle Scholar
  55. 55.
    Browning C, Smith M, Roeder R, et al. Transcriptional activation and synergy of G1-2/THP proto-oncogene with HIV Tat. J Virol, 2001; in press.Google Scholar
  56. 56.
    Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS, 1992;6:347–363.PubMedGoogle Scholar
  57. 57.
    Pereira LA, Bentley K, Peeters A, et al. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res, 2000;28(3):663–668.PubMedCrossRefGoogle Scholar
  58. 58.
    Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol, 1997;9(2):240–246.PubMedCrossRefGoogle Scholar
  59. 59.
    Canonne-Hergaux F, Aunis D, Schaeffer E. Interactions of the transcription factor AP-1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in Jurkat, glial, and neuronal cells. J Virol, 1995;69(11):6634–6642.PubMedGoogle Scholar
  60. 60.
    Kinoshita S, Chen B, Kaneshima H, Nolan G. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell, 1998;95:595–604.PubMedCrossRefGoogle Scholar
  61. 61.
    Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 1996;271(5255):1582–1586.PubMedGoogle Scholar
  62. 62.
    Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology, 1998;251(1):1–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Freed EO, Orenstein JM, Buckler-White AJ, et al. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol, 1994;68(8):5311–5320.PubMedGoogle Scholar
  64. 64.
    Rhee SS, Hunter E. A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell, 1990;63(1):77–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Hill CP, Worthylake D, Bancroft DP, et al. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA, 1996;93(7):3099–3104.PubMedCrossRefGoogle Scholar
  66. 66.
    Luban J. Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions. Cell, 1996;87(7):1157–1159.Google Scholar
  67. 67.
    Aberham C, Weber S, Phares W. Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J Virol, 1996;70(6):3536–3544.Google Scholar
  68. 68.
    Rice WG, Supko JG, Malspeis L, et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science, 1995;270(5239):1194–1197.PubMedGoogle Scholar
  69. 69.
    Ott DE, Hewes SM, Alvord WG, et al. Inhibition of Friend virus replication by a compound that reacts with the nucleocapsid zinc finger: anti-retroviral effect demonstrated in vivo. Virology, 1998;243(2):283–292.PubMedCrossRefGoogle Scholar
  70. 70.
    Dunn BM, Gustchina A, Wlodawer A, et al. Kay J. Subsite preferences of retroviral proteinases. Methods Enzymol, 1994;241:254–278PubMedGoogle Scholar
  71. 71.
    Condra JH, Schleif WA, Blahy OM, et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors [see comments]. Nature, 1995;374(6522):569–571.PubMedCrossRefGoogle Scholar
  72. 72.
    Coffin JM. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis and therapy. Science, 1995;267:483–489.PubMedGoogle Scholar
  73. 73.
    Robertson DL, Sharp PM, McCutchan FE, et al. Recombination in HIV-1 [letter]. Nature, 1995;374(6518): 124–126.PubMedCrossRefGoogle Scholar
  74. 74.
    Robertson DL, Hahn BH, Sharp PM. Recombination in AIDS viruses. Journal of Mol. Evol, 1995;40:249–259.Google Scholar
  75. 75.
    Renjifo B, Chaplin B, Mwakagile D, et al. HIV-1 subtypes A,C,D and inter-subtype recombinant genotypes in newborns of Dar-es-Salaam, Tanzania. AIDS Res Hum Retro, 1998;14:635–638.Google Scholar
  76. 76.
    Blackard JT, Renjifo BR, Mwakagile D, et al. Transmission of human immunodeficiency type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology, 1999;254(2):220–225.PubMedCrossRefGoogle Scholar
  77. 77.
    Wain-Hobson S. The fastest genome evolution ever described: HIV variation in situ. Curr Opin Genet Dev, 1993;3(6):878–883.PubMedGoogle Scholar
  78. 78.
    Miller MD, Bor YC, Bushman F. Target DNA capture by HIV-1 integration complexes. Curr Biol, 1995; 5(9):1047–1056.PubMedCrossRefGoogle Scholar
  79. 79.
    Farnet CM, Bushman FD, HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell, 1997;88(4):483–492.PubMedCrossRefGoogle Scholar
  80. 80.
    Wyatt R, Kwong PD, Desjardins E, et al. The antigenie structure of the HIV gp120 envelope glycoprotein [see comments]. Nature, 1998;393(6686):705–711.PubMedGoogle Scholar
  81. 81.
    Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998;280(5371):1884–1888.PubMedCrossRefGoogle Scholar
  82. 82.
    Hernandez LD, Hoffman LR, Wolfsberg TG, et al. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol, 1996;12:627–661.PubMedCrossRefGoogle Scholar
  83. 83.
    Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997;89(2):263–273.PubMedCrossRefGoogle Scholar
  84. 84.
    Agostini I, Navarro JM, Rey F, et al. The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB. J Mol Biol, 1996;261(5):599–606.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang L, Mukherjee S, Jia F, et al. Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Spl and trans-activation of viral long terminal repeat. J Biol Chem, 1995;270(43):25564–25569.PubMedCrossRefGoogle Scholar
  86. 86.
    Felzien LK, Woffendin C, Hottiger MO, et al. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci USA, 1998;95(9):5281–5286.PubMedCrossRefGoogle Scholar
  87. 87.
    Bour S, Schubert U, Strebel K. The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol, 1995;69(3):1510–1520.PubMedGoogle Scholar
  88. 88.
    Cohen EA, Subbramanian RA, Gottlinger HG. Role of auxiliary proteins in retroviral morphogenesis. Curr Top Microbiol Immunol, 1996;214: 219–235.PubMedGoogle Scholar
  89. 89.
    Hope TJ. Viral RNA export. Chem Biol, 1997;4(5):335–344.PubMedCrossRefGoogle Scholar
  90. 90.
    Mangasarian A, Trono D. The multifaceted role of HIV Nef Res Virol, 1997;148(1):30–33.Google Scholar
  91. 91.
    Moarefi I, LaFevre-Bernt M, Sicheri F, et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement [see comments]. Nature, 1997;385(6617):650–653.PubMedCrossRefGoogle Scholar
  92. 92.
    Manninen A, Herma Renkema G, Saksela K. Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway. J Biol Chem, 2000;275(22):16513–16517.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang JK, Kiyokawa E, Verdin E, et al. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA, 2000;97(1):394–399.PubMedGoogle Scholar
  94. 94.
    Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven transmembrane, G protein-coupled receptor. Science, 1996;272:872–877.PubMedGoogle Scholar
  95. 95.
    Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-lalpha, MIP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996;272(5270):1955–1958.PubMedGoogle Scholar
  96. 96.
    Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1 [letter]. Nature, 1998;391(6664):240.PubMedCrossRefGoogle Scholar
  97. 97.
    Clapham PR, Reeves JD, Simmons G, et al. HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands. Mol Membr Biol, 1999;16(1):49–55.PubMedGoogle Scholar
  98. 98.
    Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999;17:657–700.PubMedCrossRefGoogle Scholar
  99. 99.
    Littman DR. Chemokine receptors: keys to AIDS pathogenesis? Cell, 1998;93(5):677–680.PubMedCrossRefGoogle Scholar
  100. 100.
    He J, Chen Y, Farzan M, et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997;385(6617):645–649.PubMedCrossRefGoogle Scholar
  101. 101.
    Chan DC, Kim PS. HIV entry and its inhibition. Cell, 1998;93(5):681–684.PubMedCrossRefGoogle Scholar
  102. 102.
    Furuta RA, Wild CT, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41 [published erratum appears in Nat Struct Biol 1998 Jul;5(7):612]. Nat Struct Biol, 1998;5(4): 276–279.PubMedCrossRefGoogle Scholar
  103. 103.
    Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene [see comments]. Nature, 1996;382(6593):722–725.PubMedCrossRefGoogle Scholar
  104. 104.
    Williamson C, Loubser SA, Brice B, et al. Allelic frequencies of host genetic variants influencing susceptibility to HIV-1 infection and disease in South African populations. AIDS, 2000;14(4):449–451.PubMedGoogle Scholar
  105. 105.
    Martinson JJ, Chapman NH, Rees DC, et al. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet, 1997; 16(1): 100–103.PubMedCrossRefGoogle Scholar
  106. 106.
    McDermott DH, Zimmerman PA, Ouignard F, et al. CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet, 1998;352(9131):866–870.PubMedCrossRefGoogle Scholar
  107. 107.
    Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC) [see comments], Science, 1998;279(5349):389–393.PubMedCrossRefGoogle Scholar
  108. 108.
    Eigen M, Biebricher C. Sequence space and quasi-species distribution. In: Domingo E, Holland, J.J, and Ahlquist, P., ed. RNA Genetics. Vol. 3. Boca Raton, FL: CRC Press; 1988:211–245.Google Scholar
  109. 109.
    Simpson GG. The meaning of evolution. New Haven, CT: Yale University Press; 1949.Google Scholar
  110. 110.
    Maynard Smith J, Burian R, Kauffman Sea. Developmental constraints and evolution. Quarterly Review of Biology, 1985;60:265–287.Google Scholar
  111. 111.
    Goudsmit J, de Ronde A, de Rooij E, et al. Broad spectrum of in vivo fitness ofhuman immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J Virol, 1997;71(6):4479–4484.PubMedGoogle Scholar
  112. 112.
    Overbaugh J, Anderson RJ, Ndinya-Achola JO, et al. Distinct but related human immuniodeficeincy virus type 1 variant populations in genital secretions and blood. AIDS Res, Human Retroviruses, 1996;12:107–115.Google Scholar
  113. 113.
    Poss M, Martin HL, Kreiss JK, et al. Diversity in virus populations from genital secretions and peripheral blood from women recently infected with human immumodeficiency virus type 1. J Virol, 1995;69:8118–8122.PubMedGoogle Scholar
  114. 114.
    Zhu T, Wang N, Carr A, et al. Genetic characterization ofhuman immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol, 1996;70:3098–3107.PubMedGoogle Scholar
  115. 115.
    Poss M, Rodrigo AG, Gosink JJ, et al. Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. J Virol, 1998;72(10):8240–8251.PubMedGoogle Scholar
  116. 116.
    Kampinga G, Simonon A, Van de Perre P, et al. Primary infections with HIV-1 of women and their offspring in Rwanda: findings of heterogeneity at seroconversion, coinfection, and recombinants of HIV-1 subtypes A and C. Virology, 1997;227:63–76.PubMedCrossRefGoogle Scholar
  117. 117.
    Kanki PJ, Travers K, MBoup S, et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet, 1994;343:943–946.PubMedCrossRefGoogle Scholar
  118. 118.
    Adjorlolo-Johnson G, De Cock KM, Ekpini E, et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. JAMA, 1994;272(6):462–466.PubMedCrossRefGoogle Scholar
  119. 119.
    Del Mistro A, Chotard J, Hall AJ, et al. HIV-1 and HIV-2 seroprevalence rates in mother-child pairs living in The Gambia (West Africa). J Acquir Immune Defic Syndr, 1992;5(1):19–24.PubMedGoogle Scholar
  120. 120.
    Marlink R, Kanki P, Thior K, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science, 1994;265:1587–1590.PubMedGoogle Scholar
  121. 121.
    Tscherning C, Alaeus A, Fredrikson R, et al. Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology, 1998;241:181–188.PubMedCrossRefGoogle Scholar
  122. 122.
    Björnal Å, Sönerborg A, Tschering C, et al. Phenotypic Characteristics of Human Immunodeficiency Virus Type 1 Subtype C Isolates of Ethiopian AIDS Patients. AIDS Research Hum Retroviruses, 1999;15(7):647–653.Google Scholar
  123. 123.
    Neilson JR, John GC, Carr JK, et al. Subtypes of HIV-1 and Disease Stage among Women in Nairobi, Kenya. J. Virol, 1999;73(5):4393–4403.PubMedGoogle Scholar
  124. 124.
    Verhoef K, Sanders R, Fontaine V, et al. Evolution of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat Promoter by Conversion of an NF-kB Enhancer Element into a GABP Binding Site. J. Virol, 1999;73(2):1331–1340.PubMedGoogle Scholar
  125. 125.
    Kanki PJ, Hamel DG, Sankale J-L, et al. HIV-1 subtypes differ in disease progression. J. Infect. Dis., 1999;179(1):68–73.PubMedCrossRefGoogle Scholar
  126. 126.
    Weniger BG, Takebe Y, Ou CY, et al. The molecular epidemiology of HIV in Asia. AIDS, 1994;8:S13–S28.PubMedGoogle Scholar
  127. 127.
    Stanecki KA, and Way PO. The Dynamic HIV/AIDS Pandemic. In: Tarantola D, Mann J, eds. AIDS in the World II. New York: Oxford Press, 1996:41.Google Scholar
  128. 128.
    Neilson JR, John GC, Carr JK, et al. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol, 1999:73(5):4393–4403.PubMedGoogle Scholar
  129. 129.
    Naghavi M, Schwartz S, Sonerborg A, et al. Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. AIDS Res Hum Retroviruses, 1999;15(14):1293–1303.PubMedCrossRefGoogle Scholar
  130. 130.
    Clerici M, Butto S, Lukwiya M, et al. Immune activation in Africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project [In Process Citation]. AIDS, 2000;14(14):2083–2092.PubMedGoogle Scholar
  131. 131.
    Rizzardini G, Trabattoni D, Saresella M, et al. Immune activation in HIV-infected African individuals. Italian-Ugandan AIDS cooperation program. AIDS, 1998;12(18):2387–2396.PubMedCrossRefGoogle Scholar
  132. 132.
    Sha BE, D’Amico RD, Landay AL, et al. Evaluation of immunological markers in cervicovaginal fluid of HIV-infected and uninfected women: implications for the immunological response to HIV in the female genital tract. J AIDS and Human Retrovirol, 1997;16:161–169.Google Scholar
  133. 133.
    Anderson DJ, Politch JA, Tucker LD, et al. Quantitation of mediators of inflammation and immunity in genital tract secretions and their relevance to HIV type 1 transmission. AIDS Res Hum Retroviruses, 1988;14:43–49.Google Scholar
  134. 134.
    Ho JL, He S, Hu A, et al. Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIV-infected patients’ mononuclear cells and cell lines: an in vitro model of HIV transmission facilitated by Chlamydia trachomatis [published erratum appears in J Exp Med 1999 Nov 1;190(9):following 1362]. J Exp Med, 1995;181(4):1493–1505.PubMedGoogle Scholar
  135. 135.
    Plummer F, Simonsen J, Cameron D, et al. Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis, 1991;163(2):233–239.PubMedGoogle Scholar
  136. 136.
    Plummer FA. Heterosexual transmission of HIV-1: Interactions of conventional sexually transmitted diseases, hormone contraception and HIV-1. AIDS Res Hum Retroviruses, 1998;14(Supplement 1):5–10.Google Scholar
  137. 137.
    Bentwich Z, Maartens G, Torten D, et al. Concurrent infections and HIV pathogenesis [In Process Citation]. AIDS, 2000;14(14):2071–2081.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Monty Montano
    • 1
  • Carolyn Williamson
    • 2
  1. 1.Section of Infectious Diseases, Department of MedicineBoston University School of MedicineBostonUSA
  2. 2.Division of Medical VirologyUniversity of CapetownCapetownSouth Africa

Personalised recommendations