Advertisement

Introduction to Classification in Microarray Experiments

  • Sandrine Dudoit
  • Jane Fridly

Keywords

Feature Selection Gene Expression Data Linear Discriminant Analysis Microarray Experiment Neighbor Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald A., Boldrick J. C., Sabet H., Tran T., Yu X., Powell J. I., Yang L., Marti G. E., Moore T., Jr J. H., Lu L., Lewis D. B., Tibshirani R., Sherlock G., Chan W. C., Greiner T. C., Weisenburger D. D., Armitage J. O., Warnke R., Levy R., Wilson W., Grever M. R., Byrd J. C., Botstein D., Brown P. O., and Staudt L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403:503–511.PubMedGoogle Scholar
  2. Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D., and Levine A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 96:6745–6750.PubMedCrossRefGoogle Scholar
  3. Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R., Yakhini Z., Ben-Dor A., Sampas N., Dougherty E., Wang E., Marincola F., Gooden C., Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K., Beaudry C., Berens M., Alberts D., Sondak V., Hayward N., and Trent J. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406:536–540.PubMedCrossRefGoogle Scholar
  4. Bø T. H. and Jonassen I. (2002). New feature subset selection procedures for classification of expression profiles. Genome Biology, 3(4):1–11.Google Scholar
  5. Boldrick J. C., Alizadeh A. A., Diehn M., Dudoit S., Liu C. L., Belcher C. E., Botstein D., Staudt L. M., Brown P. O., and Relman D. A. (2002). Stereotyped and specific gene expression programs in human innate immue responses to bacteria. Proc. Natl. Acad. Sci., 99(2):972–977.PubMedCrossRefGoogle Scholar
  6. Breiman L. (1998). Arcing classifiers. Annals of Statistics, 26:801–824.Google Scholar
  7. Breiman L. (1999). Random forests — random features. Technical Report 567, Department of Statistics, U.C. Berkeley.Google Scholar
  8. Breiman L., Friedman, J.H. Olshen, R., and Stone C.J. (1984). Classification and regression trees. The Wadsworth statistics/probability series. Wadsworth International Group.Google Scholar
  9. Chen X., Cheung S.T., So S., Fan S.T., Barry C., Higgins J., Lai K.-M., Ji J., Dudoit S., Ng I. O. L., van de Rijn M., Botstein D., and Brown P.O. (2002). Gene expression patterns in human liver cancers. Molecular Biology of the Cell, 13(6):1929–1939.PubMedGoogle Scholar
  10. Chow M.L., Moler E.J., and Mian I.S. (2001). Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiological Genomics, 5:99–111.PubMedGoogle Scholar
  11. Costello J. F., Fruehwald M.C., Smiraglia D.J., Rush, L. J., Robertson G.P., Gao X., Wright F.A., Feramisco J.D., Peltomki P., Lang J.C., Schuller D.E., Yu L., Bloomfeld C.D., Caligiuri M.A., Yates A., Nishikawa R., Huang H.J.S., Petrelli N.J., Zhang X., O’Dorisio M.S., Held W.A., Cavenee W.K., and Plass C. (2000). Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nature Genetics, 24:132–138.PubMedCrossRefGoogle Scholar
  12. Dettling M. and Buelmann P. (2002). How to use boosting for tumor classification with gene expression data. Available at http://stat.ethz.ch/∼dettling/boosting.
  13. Dudoit S. and Fridlyand J. (2002). Classification in microarray experiments. In Speed, T. P., editor, Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC. (To appear).Google Scholar
  14. Dudoit S., Fridlyand J., and Speed T P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77–87.CrossRefGoogle Scholar
  15. Fix E. and Hodges J. (1951). Discriminatory analysis, nonparametric discrimination: consistency properties. Technical report, Randolph Field, Texas: USAF School of Aviation Medicine.Google Scholar
  16. Friedman J.H, (1994). Flexible metric nearest neighbor classification. Technical report, Department of Statistics, Stanford University.Google Scholar
  17. Friedman J.H. (1996). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Technical report, Department of Statistics, Stanford University.Google Scholar
  18. Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lander E.S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531–537.PubMedCrossRefGoogle Scholar
  19. Hastie T., Tibshirani R., and Friedman J.H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Verlag.Google Scholar
  20. Jain A.N., Chin K., Børresen-Dale A., Erikstein B.K., Eynstein L.P., Kaaresen R., and Gray J.W. (2001). Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc. Natl. Acad, Sci., 98:7952–7957.Google Scholar
  21. Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate Analysis. Academic Press, Inc., San Diego.Google Scholar
  22. McLachlan G.J. (1992). Discriminant analysis and statistical pattern recognition. Wiley, New York.Google Scholar
  23. Perou C.M., Jeffrey S.S., van de Rijn M., Rees C.A., Eisen M.B., Ross D.T., Pergamenschikov A., Williams C.F., Zhu S.X., Lee J.C.F., Lashkari D., Shalon D., Brown, P.O., and Botstein D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci., 96:9212–9217.PubMedCrossRefGoogle Scholar
  24. Pollack J.R., Perou C.M., Alizadeh A.A., Eisen M.B., Pergamenschikov A., Williams C.F., Jeffrey S.S., Botstein D., and Brown P.O. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23:41–46.PubMedCrossRefGoogle Scholar
  25. Pomeroy S.L., Tamayo P., Gaasenbeek M., Sturla L.M., Angelo M., McLaughlin M.E., Kim J.Y., Goumnerova L.C., Black P.M., Lau C., Allen J.C., Zagzag D., Olson J., Curran T., Wetmore C., Biegel J.A., Poggio T., Mukherjee S., Rifkin R., Califano A., Stolovitzky G., Louis D.N., Mesirov J.P., Lander E.S., and Golub T.R. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(24):436–442. (and supplementary information).PubMedGoogle Scholar
  26. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press, Cambridge, New York. Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M, Spellman, P., Iyer, V., Jeffrey, S. S., de Rijn, M. V., Waltham, M., Pergamenschikov, A., Lee, J. C. F., Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D., and Brown, P. O. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24:227–234.Google Scholar
  27. Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsenb, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J. C., Brown, P. O., Botstein, D., Lønningg, P. E., and Børresen-Dale, A. L. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci., 98(19):10869–10874.PubMedGoogle Scholar
  28. Tibshirani R., Hastie T., and G. Chu B.N. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci., 99:6567–6572.PubMedCrossRefGoogle Scholar
  29. West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H., Marks J.R., and Nevins J.R. (2001). Predicting the clinical status of human breast cancer using gene expression profiles. Proc. Natl. Acad. Sci., 98:11462–11467.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sandrine Dudoit
    • 1
  • Jane Fridly
    • 2
  1. 1.Division of Biostatistics, School of Public HealthUniversity of California BerkeleyBerkeley
  2. 2.Jain Lab, Comprehensive Cancer CenterUniversity of California, San FranciscoSan Francisco

Personalised recommendations