Singular Value Decomposition and Principal Component Analysis

  • Michael E. Wall
  • Andreas Rechtsteiner
  • Luis M. Rocha


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alter O., Brown P.O., Botstein D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci 97:10101–06.PubMedCrossRefGoogle Scholar
  2. Berry M.W. (1992). Large-scale sparse singular value computations. International Journal of Supercomputer Applications 6:13–49.Google Scholar
  3. Berry M.W., Do T., Obrien G.W., Krishna V., Varadhan S. (1993). SVDPACKC: Version 1.0 User’s Guide, Knoxville: University of Tennessee.Google Scholar
  4. Berry M.W., Dumais S.T., Obrien G.W. (1995). Using linear algebra for intelligent information-retrieval. Siam Review 37:573–95.CrossRefGoogle Scholar
  5. Borg I., Groenen P. (1997). Modern Multidimensional Scaling: Theory and Applications. New York: Springer Verlag.Google Scholar
  6. Cattell R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1:245–76.Google Scholar
  7. Cho R.J., Campbell M.J., Winzeler E.A., Steinmetz L., Conway A., Wodicka L. et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73.PubMedCrossRefGoogle Scholar
  8. Deprettere F. (1988). SVD and Signal Processing: Algorithms, Analysis and Applications. Amsterdam: Elsevier Science Publishers.Google Scholar
  9. Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–68.PubMedCrossRefGoogle Scholar
  10. Everitt B.S., Dunn G. (2001). Applied Multivariate Data Analysis. London: Arnold.Google Scholar
  11. Everitt S.E., Landau S., Leese M. (2001). Cluster Analysis. London: Arnold.Google Scholar
  12. Friedman J.H., Tukey J.W. (1974). A projection pursuit algorithm for exploratory data analysis, IEEE Transactions on Computers 23:881–89.Google Scholar
  13. Golub G., Van Loan C. (1996). Matrix Computations. Baltimore: Johns Hopkins Univ Press.Google Scholar
  14. Hastie T., Tibshirani R., Eisen M.B., Alizadeh A., Levy R., Staudt L. et al. (2000). “Gene shaving” as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 1:research0003.1-03.21.Google Scholar
  15. Holter N.S., Mitra M., Maritan A., Cieplak M., Banavar J.R., Fedoroff N.V. (2000). Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci 97:8409–14.PubMedCrossRefGoogle Scholar
  16. Holter N.S., Maritan A., Cieplak M., Fedoroff N.V., Banavar J.R. (2001). Dynamic modeling of gene expression data. Proc Natl Acad Sci 98:1693–98.PubMedCrossRefGoogle Scholar
  17. Hughes T.R., Marton M.J., Jones A.R., Roberts C.J., Stoughton R., Armour C.D. et al. (2000). Functional discovery via a compendium of expression profiles. Cell 102:109–26.PubMedCrossRefGoogle Scholar
  18. Hyvärinen (1999). A. Survey on Independent Component Analysis. Neural Computing Surveys 2:94–128.Google Scholar
  19. Jessup E.R., Sorensen D.C. (1994). A parallel algorithm for computing the singular-value decomposition of a matrix. Siam Journal on Matrix Analysis and Applications 15:530–48.CrossRefGoogle Scholar
  20. Jolliffe I.T. (1986). Principal Component Analysis. New York: Springer.Google Scholar
  21. Kanji G.K. (1993). 100 Statistical Tests. New Delhi: Sage.Google Scholar
  22. Knudsen S. (2002). A Biologist’s Guide to Analysis of DNA Microarray Data. New York: John Wiley & Sons.Google Scholar
  23. Kohonen T. (2001). Self-Organizing Maps. Berlin: Springer-Verlag.Google Scholar
  24. Liebermeister W. (2002). Linear modes of gene expression determined by independent component analysis. Bioinformatics 18:51–60.PubMedCrossRefGoogle Scholar
  25. Raychaudhuri S., Stuart J.M., Altman R.B. (2000). Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000:455–66.Google Scholar
  26. Richards J.A. (1993). Remote Sensing Digital Image Analysis. New York: Springer-Verlag.Google Scholar
  27. Scholkopf B., Smola A.J., Muller K.-R. (1996). “Nonlinear component analysis as a kernel eigenvalue problem” Technical Report. Tuebingen: Max-Planck-Institut fur biologische Kybernetik.Google Scholar
  28. Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B. et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–97.PubMedGoogle Scholar
  29. Strang G. (1998). Introduction to Linear Algebra. Wellesley, MA: Wellesley Cambridge Press.Google Scholar
  30. Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E. et al. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci 96:2907–12.PubMedCrossRefGoogle Scholar
  31. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R. et al. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–25.PubMedCrossRefGoogle Scholar
  32. Wall M.E., Dyck P.A., Brettin T.S. (2001). SVDMAN — singular value decomposition analysis of microarray data. Bioinformatics 17:566–68.PubMedCrossRefGoogle Scholar
  33. Yeung K.Y., Ruzzo W.L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics 17:763–74.PubMedGoogle Scholar
  34. Yeung M.K., Tegner J., Collins J.J. (2002). Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 99:6163–68.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael E. Wall
    • 1
    • 2
  • Andreas Rechtsteiner
    • 1
    • 3
  • Luis M. Rocha
    • 1
  1. 1.Computer and Computational Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Systems Science Ph.D. ProgramPortland State UniversityPortlandUSA

Personalised recommendations