Singular Value Decomposition and Principal Component Analysis

  • Michael E. Wall
  • Andreas Rechtsteiner
  • Luis M. Rocha

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter O., Brown P.O., Botstein D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci 97:10101–06.PubMedCrossRefGoogle Scholar
  2. Berry M.W. (1992). Large-scale sparse singular value computations. International Journal of Supercomputer Applications 6:13–49.Google Scholar
  3. Berry M.W., Do T., Obrien G.W., Krishna V., Varadhan S. (1993). SVDPACKC: Version 1.0 User’s Guide, Knoxville: University of Tennessee.Google Scholar
  4. Berry M.W., Dumais S.T., Obrien G.W. (1995). Using linear algebra for intelligent information-retrieval. Siam Review 37:573–95.CrossRefGoogle Scholar
  5. Borg I., Groenen P. (1997). Modern Multidimensional Scaling: Theory and Applications. New York: Springer Verlag.Google Scholar
  6. Cattell R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1:245–76.Google Scholar
  7. Cho R.J., Campbell M.J., Winzeler E.A., Steinmetz L., Conway A., Wodicka L. et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73.PubMedCrossRefGoogle Scholar
  8. Deprettere F. (1988). SVD and Signal Processing: Algorithms, Analysis and Applications. Amsterdam: Elsevier Science Publishers.Google Scholar
  9. Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–68.PubMedCrossRefGoogle Scholar
  10. Everitt B.S., Dunn G. (2001). Applied Multivariate Data Analysis. London: Arnold.Google Scholar
  11. Everitt S.E., Landau S., Leese M. (2001). Cluster Analysis. London: Arnold.Google Scholar
  12. Friedman J.H., Tukey J.W. (1974). A projection pursuit algorithm for exploratory data analysis, IEEE Transactions on Computers 23:881–89.Google Scholar
  13. Golub G., Van Loan C. (1996). Matrix Computations. Baltimore: Johns Hopkins Univ Press.Google Scholar
  14. Hastie T., Tibshirani R., Eisen M.B., Alizadeh A., Levy R., Staudt L. et al. (2000). “Gene shaving” as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 1:research0003.1-03.21.Google Scholar
  15. Holter N.S., Mitra M., Maritan A., Cieplak M., Banavar J.R., Fedoroff N.V. (2000). Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci 97:8409–14.PubMedCrossRefGoogle Scholar
  16. Holter N.S., Maritan A., Cieplak M., Fedoroff N.V., Banavar J.R. (2001). Dynamic modeling of gene expression data. Proc Natl Acad Sci 98:1693–98.PubMedCrossRefGoogle Scholar
  17. Hughes T.R., Marton M.J., Jones A.R., Roberts C.J., Stoughton R., Armour C.D. et al. (2000). Functional discovery via a compendium of expression profiles. Cell 102:109–26.PubMedCrossRefGoogle Scholar
  18. Hyvärinen (1999). A. Survey on Independent Component Analysis. Neural Computing Surveys 2:94–128.Google Scholar
  19. Jessup E.R., Sorensen D.C. (1994). A parallel algorithm for computing the singular-value decomposition of a matrix. Siam Journal on Matrix Analysis and Applications 15:530–48.CrossRefGoogle Scholar
  20. Jolliffe I.T. (1986). Principal Component Analysis. New York: Springer.Google Scholar
  21. Kanji G.K. (1993). 100 Statistical Tests. New Delhi: Sage.Google Scholar
  22. Knudsen S. (2002). A Biologist’s Guide to Analysis of DNA Microarray Data. New York: John Wiley & Sons.Google Scholar
  23. Kohonen T. (2001). Self-Organizing Maps. Berlin: Springer-Verlag.Google Scholar
  24. Liebermeister W. (2002). Linear modes of gene expression determined by independent component analysis. Bioinformatics 18:51–60.PubMedCrossRefGoogle Scholar
  25. Raychaudhuri S., Stuart J.M., Altman R.B. (2000). Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000:455–66.Google Scholar
  26. Richards J.A. (1993). Remote Sensing Digital Image Analysis. New York: Springer-Verlag.Google Scholar
  27. Scholkopf B., Smola A.J., Muller K.-R. (1996). “Nonlinear component analysis as a kernel eigenvalue problem” Technical Report. Tuebingen: Max-Planck-Institut fur biologische Kybernetik.Google Scholar
  28. Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B. et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–97.PubMedGoogle Scholar
  29. Strang G. (1998). Introduction to Linear Algebra. Wellesley, MA: Wellesley Cambridge Press.Google Scholar
  30. Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E. et al. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci 96:2907–12.PubMedCrossRefGoogle Scholar
  31. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R. et al. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–25.PubMedCrossRefGoogle Scholar
  32. Wall M.E., Dyck P.A., Brettin T.S. (2001). SVDMAN — singular value decomposition analysis of microarray data. Bioinformatics 17:566–68.PubMedCrossRefGoogle Scholar
  33. Yeung K.Y., Ruzzo W.L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics 17:763–74.PubMedGoogle Scholar
  34. Yeung M.K., Tegner J., Collins J.J. (2002). Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 99:6163–68.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael E. Wall
    • 1
    • 2
  • Andreas Rechtsteiner
    • 1
    • 3
  • Luis M. Rocha
    • 1
  1. 1.Computer and Computational Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Systems Science Ph.D. ProgramPortland State UniversityPortlandUSA

Personalised recommendations