Midges: Chironomidae and Related Diptera

  • Ian R. Walker
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 4)


Among insects, the chitinous larval remains of the order Diptera (true flies) are most abundant in lake sediments, and thus have proven to be especially useful in palaeoenviron-mental studies. Within this large and diverse group, however, remains of the Chironomidae (non-biting midges) greatly exceed the remains of all other Diptera in abundance. Only a few other families—the Chaoboridae (phantom midges), the Ceratopogonidae (biting midges or “no-see-ums”), and the Simuliidae (black flies)—are sufficiently common to be of much interest to palaeoecologists. Each of these families is principally aquatic in its larval form, although the Ceratopogonidae and Chironomidae comprise some terrestrial or semi-terrestrial species. Head capsules are the principal remains of the Chironomidae, Ceratopogonidae and Simuliidae that can be recovered from lake sediments (Fig. 1a, b, c, d, f). Identification of the Chaoboridae relies instead upon the larval mandibles (Fig. le).


Chironomidae Chaoboridae Ceratopogonidae Simuliidae Culicidae Thaumaleidae black flies midges palaeoecology palaeoentomology palaeolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammann, B., H. J. B. Birks, S. J. Brooks, U. Eicher, U. von Grafenstein, W. Hofmann, G. Lemdahl, J. Schwander, K. Tobolski & L. Wick, 2000. Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr. Palaeoclim. Palaeoecol. 159:313–347.Google Scholar
  2. Andersen, F. S., 1938. Spätglaciale Chironomiden. Medd. Dansk geol. Foren. 9: 320–326.Google Scholar
  3. Ariztegui, D., M. M. Bianchi, J. Masaferro, E. Lafargue & F. Niessen, 1997. Interhemispheric synchrony of Late-glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. J. Quat. Sci. 12: 333–338.Google Scholar
  4. Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds.), 1995. The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman & Hall, London, 572 pp.Google Scholar
  5. Barber, K. E., R. W. Battarbee, S. J. Brooks, G. Eglinton, E. Y. Haworth, F. Oldfield, A. C. Stevenson, R. Thompson, P. G. Appleby, W. E. N. Austin, N. G. Cameron, K. J. Ficken, P. Golding, D. D. Harkness, J. A. Holmes, R. Hutchinson, J. P. Lishman, D. Maddy, L. C. V. Pinder, N. L. Rose &R. E. Stoneman, 1999. Proxy records of climate change in the UK over the last two millennia: documented change and sedimentary records from lakes and bogs. J. geol. Soc., Lond. 156: 369–380.Google Scholar
  6. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 107–124.Google Scholar
  7. Bitusik, P. & V. Kubovcik, 1999. Sub-fossil chironomids (Diptera: Chironomidae) from the sediments of the Nizné Terianske pleso (High Tatra Mts., Slovakia). Dipterologica bohemoslovaca 9:11–20.Google Scholar
  8. Borkent, A., 1979. Systematics and bionomics of the species of the subgenus Schadonophasma Dyar and Shannon (Chaoborus, Chaoboridae, Diptera). Quaest. ent. 15: 122–255.Google Scholar
  9. Borkent, A., 1981. The distribution and habitat preferences of the Chaoboridae (Culicomorpha: Diptera) of the Holarctic Region. Can. J. Zool. 59: 122–133.Google Scholar
  10. Borkent, A., 1993. A world catalogue of fossil and extant Corethrellidae and Chaoboridae (Diptera), with a listing of references to keys, bionomic information and descriptions of each known life stage. Ent. scand. 24: 1–24.Google Scholar
  11. Bracken, W. M., F. Cuppage, R. L. McLaury, C. Kirwin & C. D. Klaassen, 1985. Comparative effectiveness of topical treatments for hydrofluoric acid burns. J. Occupational Medicine 27: 733–739.Google Scholar
  12. Brodersen, K. P., 1994. Subfossile dansemyg i sø-sedimenter. Miljøforskning 12: 12–15.Google Scholar
  13. Brodersen, K. P., 1998. Macro invertebrate communities in Danish Lakes: Classification and Trophic Reconstruction. Ph.D. thesis, University of Copenhagen, Copenhagen, 143 pp.Google Scholar
  14. Brodersen, K. P. & N. J. Anderson, 2000. Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut-Kangerlussuaq region, southern West Greenland. Geology of Greenland Survey Bull. 186: 78–82.Google Scholar
  15. Brodersen, K. P. & C. Lindegaard, 1997. Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342/343: 125–132.Google Scholar
  16. Brodersen, K. P. & C. Lindegaard, 1999a. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwat. Biol. 42: 143–157.Google Scholar
  17. Brodersen, K. P. & C. Lindegaard, 1999b. Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records. J. Paleolim. 22: 41–52.Google Scholar
  18. Brooks, S. J., 1996. Three thousand years of environmental history in a Cairngorms Lochan revealed by analysis of non-biting midges (Insecta: Diptera: Chironomidae). Bot. J. Scotland 48: 89–98.Google Scholar
  19. Brooks, S. J., 1997. The response of Chironomidae (Insecta: Diptera) assemblages to late-glacial climatic change in Kråkenes Lake, western Norway. In Ashworth, A. C., P. C. Buckland & J. P. Sadler (eds.) Studies in Quaternary Entomology—An Inordinate Fondness for Insects. Quat. Proc. 5, John Wiley & Sons, Chichester: 49–58.Google Scholar
  20. Brooks, S. J., 2000. Late-glacial fossil midge stratigraphies (Insecta: Diptera: Chironomidae) from the Swiss Alps. Palaeogeogr. Palaeoclim. Palaeoecol. 159: 261–279.Google Scholar
  21. Brooks, S. J. & H. J. B. Birks, 2000a. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.Google Scholar
  22. Brooks, S. J. & H. J. B. Birks, 2000b. Chironomid-inferred late-glacial air temperatures at Whitrig Bog, south east Scotland. J. Quat. Sci. 15: 759–764.Google Scholar
  23. Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat. Sci. Rev. 20: 1723–1741.Google Scholar
  24. Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997a. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308.Google Scholar
  25. Brooks, S. J., F. E. Mayle & J. J. Lowe, 1997b. Chironomid-based Lateglacial climatic reconstruction for southeast Scotland. J. Quat. Sci. 12: 161–167.Google Scholar
  26. Brooks, S. J., H. Bennion & H. J. B. Birks, 2001. Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshw. Biol. 46: 513–532.Google Scholar
  27. Brugam, R. B., 1984. Insect Remains. In R. B. Brugam. Holocene Paleolimnology. In Wright, H. E., Jr. (ed.) Late Quaternary Environments of the United States. 2. The Holocene. Longman, London: 217–218.Google Scholar
  28. Burke, W. J., U. R. Hoegg & R. E. Phillips, 1973. Systemic fluoride poisoning resulting from a fluoride skin burn. J. Occupational Medicine 15: 39–41.Google Scholar
  29. Butler, M. G., 1982. A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae). Can. J. Zool. 60: 58–70.Google Scholar
  30. Carter, C. E., 2001. On the use of instar information in the analysis of subfossil chironomid data. J. Paleolim. 25:493–501.Google Scholar
  31. Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.Google Scholar
  32. Cranston, P. S., 1995. Introduction. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds.) The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 1–7.Google Scholar
  33. Crisman, T. L., 1978. Reconstruction of past lacustrine environments based on the remains of aquatic invertebrates. In Walker, D. & J. C. Guppy (eds.) Biology and Quaternary Environments. Aust. Acad. Sci., Canberra: 69–101.Google Scholar
  34. Crisman, T. L., 1988. The use of subfossil benthic invertebrates in aquatic resource management. In Adams, W. J., G. A. Chapman & W. G. Landis (eds.) Aquatic Toxicology and Hazard Assessment: 10th volume, ASTM STP 971. Am. Soc. Testing Materials, Philadelphia: 71–88.Google Scholar
  35. Currie, D. C., 1986. An annotated list of and keys to the immature black flies of Alberta (Diptera: Simuliidae). Mem. entomol. Soc. Can. 134: 1–90.Google Scholar
  36. Currie, D. C. & I. R. Walker, 1992. Recognition and palaeohydrologic significance of fossil black fly larvae, with a key to the Nearctic genera (Diptera: Simuliidae). J. Paleolim. 7: 37–54.Google Scholar
  37. Cwynar, L. C. & A. J. Levesque, 1995. Chironomid evidence for late-glacial climatic reversals in Maine. Quat. Res. 43: 405–413.Google Scholar
  38. Dayton, J. A., 1986. Animal remains—the Cladocera and Chironomidae. In Stead, I. M., J. B Bourke & D. Brothwell (eds.) Lindow Man: The Body in the Bog. British Museum, Lond.: 93–98.Google Scholar
  39. De Deyne, P., 1999. Habitat selection of larval Chironomidae in a shallow, fluctuating tropical lake (Lake Naivasha, Kenya), [in Dutch: Habitatselectie van chironomiden (Insecta: Diptera) in een fluctuerend tropisch meerecosysteem (Lake Naivasha, Kenia)]. Licentiate in Zoology thesis, Ghent Univ., Ghent, 50 pp.Google Scholar
  40. Douglas, D. J. & D. A. Murray, 1987. Paleolimnological studies of Irish lakes 1: Lough Leane, Killarney, County Kerry. Irish J. Envir. Sci. 4: 33–41.Google Scholar
  41. Eggermont, H., 1999. Impact of soil erosion in Burundi and western Tanzania on the larval chironomid fauna of river deltas in Lake Tanganyika, East Africa, [in Dutch: De invloed van bodemerosie in Burundi en westelijk Tanzanie op de benthische biodiversiteit van Lake Tanganyika, Oost-Afrika]. Licentiate in Zoology thesis, Ghent Univ., Ghent, 159 pp.Google Scholar
  42. Fægri, K., P. E. Kaland & K. Krzywinski, 1989. Textbook of Pollen Analysis, 4th Ed. Wiley, Chichester, 328 pp.Google Scholar
  43. Francis, D. R., 2001. A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chironomid remains. J. Paleolim. 25: 351–365.Google Scholar
  44. Frey, D. G., 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergebn. Limnol. 2: 1–114.Google Scholar
  45. Frey, D. G., 1976. Interpretation of Quaternary paleoecology from Cladocera and midges, and prognosis regarding usability of other organisms. Can. J. Zool. 54: 2208–2226.Google Scholar
  46. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.Google Scholar
  47. Gams, H., 1927. Die Geschichte der Lunzer Seen, Moore und Wälder. Int. Revue ges. Hydrobiol. Hydrogr. 18: 305–395.Google Scholar
  48. Gannon, J. E., 1971. Two counting cells for the enumeration of Zooplankton micro-crustacea. Trans. am. microsc. Soc. 90: 486–490.Google Scholar
  49. Giller, P. S. & B. Malmqvist, 1998. The Biology of Streams and Rivers. Oxford University Press, Oxford, 296 pp.Google Scholar
  50. Guilizzoni, P., A. Lami & J. Massaferro, 1992. Indagini paleolimnologiche sul Lago di Tovel (Trentino). Studi Trentini di Scienze Naturali 67: 53–98.Google Scholar
  51. Guilizzoni, P., A. Marchetto, A. Lami, N. G. Cameron, P. G. Appleby, N. L. Rose, Ø. A. Schnell, C. A. Belis, A. Giorgis & L. Guzzi, 1996. The environmental history of a mountain lake (ago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary, palaeolimnological study. J. Paleolim. 15: 245–264.Google Scholar
  52. Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999a. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44: 739–756.Google Scholar
  53. Hall, R. I., P. R. Leavitt, A. S. Dixit, R. Quinlan & J. P. Smol, 1999b. Limnological succession in reservoirs: a paleolimnological comparison of two methods of reservoir formation. Can. J. Fish. aquat. Sci. 56: 1109–1121.Google Scholar
  54. Heinrichs, M. L., 1995. Chironomid-based Paleosalinity Reconstruction of Three Lakes in the South-central Interior of British Columbia, Canada. M.Sc. thesis, Simon Fraser Univ., Burnaby, 58 pp.Google Scholar
  55. Heinrichs, M. L., S. E. Wilson, L R. Walker, J. P. Smol, R. W. Mathewes & K. J. Hall, 1997. Midge-and diatom-based palaeosalinity reconstructions for Mahoney Lake, Okanagan Valley, British Columbia, Canada. Int. J. Salt Lake Res. 6: 249–267.Google Scholar
  56. Heinrichs, M. L., I. R. Walker, R. W. Mathewes & R. J. Hebda, 1999. Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Géographie Phys.Quat. 53:211–221.Google Scholar
  57. Heinrichs, M. L., I. R. Walker, and R. W. Mathewes, 2001. Chironomid-based paleosalinity records in southern British Columbia, Canada: A comparison of transfer functions. J. Paleolim. 26:147–159.Google Scholar
  58. Heiri, O. & A. F. Loiter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343–350.Google Scholar
  59. Henrikson, L. & H. G. Oscarson, 1985. History of the acidified Lake Gardsjon: the development of chironomids. Ecol. Bull. 37: 58–63.Google Scholar
  60. Hirvenoja, M., 1998. The history of Sompiojärvi and Mustajärvi, Corynocera ambigua lakes in northern Finland, in light of the subfossils of Chironomidae (Diptera). Oulanka Reports 18: 7–35.Google Scholar
  61. Hofmann, W., 1971. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Egrebn. Limnol. 6: 1–50.Google Scholar
  62. Hofmann, W., 1984. A subfossil record of the presumed larva of Corynocera oliven Lindeberg from the Lobsigensee (Swiss Plateau). Studies in the Late-Quaternary of Lobsigensee 8. Spixiana 7: 211–214.Google Scholar
  63. Hofmann, W., 1986. Chironomid analysis. In Berglund, B. E. (eds.) Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester: 715–727.Google Scholar
  64. Hofmann, W., 1987. Stratigraphy of Cladocera (Crustacea) and Chironomidae (Insecta: Diptera) in three sediment cores from the central Baltic Sea as related to paleo-salinity. Int. Revue ges. Hydrobiol. 72: 97–106.Google Scholar
  65. Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 501–509.Google Scholar
  66. Hofmann, W., 1993. Late-glacial/Holocene changes of the climatic and trophic conditions in three Eifel Maar lakes, as indicated by faunal remains. II. Chironomidae (Diptera). In Negendank, J. F. W. & B. Zolitschka (eds.) Paleolimnology of European Maar Lakes. Lecture Notes in Earth Sciences, Vol. 49. Springer-Verlag, Berlin: 421–433.Google Scholar
  67. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J. Paleolim. 19: 55–62.Google Scholar
  68. Hribar, L. J. & G. R. Mullen, 1991. Comparative morphology of the mouthparts and associated feeding structures of biting midge larvae (Diptera: Ceratopogonidae). Contrib. Am. Ent. Inst. 26: 3–71.Google Scholar
  69. Ilyashuk, B. P. & E. A. Ilyashuk, 2001. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, northwestern Russia) to atmospheric contamination. J. Paleolim. 25: 467–475.Google Scholar
  70. Iovino, A. J., 1975. Extant Chironomid Larval Populations and the Representativeness and Nature of their Remains in Lake Sediments. Ph. D. Thesis, Indiana Univ., Bloomington, Indiana, 60 pp.Google Scholar
  71. Itkonen, A. & H. Olander, 1997. The origin of the hypertrophic state of a shallow boreal shield lake. Boreal Envir. Res. 2: 183–198.Google Scholar
  72. Johnson, M. G. & O. C. McNeil, 1988. Fossil midge associations in relation to trophic and acidic state of the Turkey Lakes. Can. J. Fish, aquat. Sci. 45 (Suppl. 1): 136–144.Google Scholar
  73. Johnson, M. G., J. R. M. Kelso, O. C. McNeil & W. B. Morton, 1990. Fossil midge associations and the historical status offish in acidified lakes. J. Paleolim. 3: 113–127.Google Scholar
  74. Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming & J. P. Smol, 1992. Assessing trends in fishery resources and lake water aluminum from paleolimnological analyses of siliceous algae. Can. J. Fish, aquat. Sci. 49: 116–127.Google Scholar
  75. Klink, A. 1989. The lower Rhine: palaeoecological analysis. In Petts, G. E. (ed.) Historical Change of Large Alluvial Rivers: Western Europe. John Wiley & Sons, Chichester: 183–201.Google Scholar
  76. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43–54.Google Scholar
  77. Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Bellis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (Central Italy). J. Paleolim. 10: 181–197.Google Scholar
  78. Lamontagne, S., D. B. Donald & D. W. Schindler, 1994. The distribution of four Chaoborus species (Diptera, Chaoboridae) along an elevation gradient in Canadian Rocky Mountain lakes. Can. J. Zool. 72: 1531–1537.Google Scholar
  79. Langbein, W., 1961. Salinity and Hydrology of Closed Lakes. U. S. Geol. Surv., Professional Paper 412, 20 pp.Google Scholar
  80. Larocque, I., R. I. Hall & E. Grahn, 2001. Chironomids as indicators of climate change: A 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307–322.Google Scholar
  81. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993a. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.Google Scholar
  82. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993b. Erratum: A previously unrecognized late-glacial cold event in eastern North America. Nature 363: 188.Google Scholar
  83. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multiproxy investigation of Late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.Google Scholar
  84. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1996. Richness, diversity and succession of late-glacial chironomid assemblages in New Brunswick, Canada. J. Paleolim. 16: 257–274.Google Scholar
  85. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1997. Exceptionally steep north-south gradients in lake temperatures during the last deglaciation. Nature 385: 423–426.Google Scholar
  86. Little, J. L. & J. P. Smol, 2000. Changes in fossil midge (Chironomidae) assemblages in response to cultural activities in a shallow, polymictic lake. J. Paleolim. 23: 207–212.Google Scholar
  87. Little, J. L., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can. J. Fish, aquat. Sci. 57: 333–341.Google Scholar
  88. Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arct. Antarct. Alp. Res. 31: 341–352.Google Scholar
  89. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  90. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.Google Scholar
  91. Lotter, A. R, I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat. Sci. Rev. 18: 717–735.Google Scholar
  92. Lowe, J. J., H. H. Birks, S. J. Brooks, G. R. Coope, D. D. Harkness, F. E. Mayle, C. Sheldrick, C. S. M. Turney & M. J. C. Walker, 1999. The chronology of palaeoenvironmental changes during the Last Glacial-Holocene transition: towards an event stratigraphy for the British Isles. J. geol. Soc.,Lond. 156:397–410.Google Scholar
  93. Massaferro, J., 1994. Paleolimnologia di sei laghi vulcanici italiani e di un lago argentino di origine glaciale. Doctoral thesis, Univ. Parma, Parma, 187 pp.Google Scholar
  94. Massaferro, J., 2000. Fossil chironomid assemblages from an oligotrophic lake of Patagonia (Lake Mascardi, Argentina) during the Late-glacial period. In Hoffrichter, O. (ed.) Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen: 535–541.Google Scholar
  95. Massaferro, J. & J. Corley, 1998. Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. Aquat. Conserv.: Mar. freshwat. Ecosyst. 8:315–323.Google Scholar
  96. Massaferro, J., A. Lami, P. Guilizzoni & F. Niessen, 1993. Record of changes in the fossil chironomids and other parameters in the volcanic Lake Nemi (Central Italy). Verh. int. Ver. Limnol. 25: 1113–1116.Google Scholar
  97. Mason, I. M., M. A. J. Guzkowska, C. G. Rapley & F. A. Street-Perrott, 1994. The response of lake levels and areas to climatic change. Climatic Change 27: 161–197.Google Scholar
  98. Mayer, T. & M. G. Johnson, 1994. History of anthropogenic activities in Hamilton Harbour as determined from the sedimentary record. Envir. Pollut. 86: 341–347.Google Scholar
  99. Mayle, F E., M. Bell, H. H. Birks, S. J. Brooks, G. R. Coope, J. J. Lowe, C. Sheldrick, L. Shijie, C. S. M. Turney & M. J. C. Walker, 1999. Climate variations in Britain during the Last Glacial-Holocene transition (15.0–11.5 cal ka BP): comparison with the GRIP ice-core record. J. geol. Soc., Lond. 156: 411–423.Google Scholar
  100. Mees, F., D. Verschuren, R. Nijs & H. Dumont, 1991. Holocene evolution of the crater lake at Malha, northwest Sudan. J. Paleolim. 5: 227–253.Google Scholar
  101. Miskimmin, B. M. & D. W. Schindler, 1994. Long-term invertebrate community response to toxaphene treatment in two lakes: 50-yr records reconstructed from lake sediments. Can. J. Fish. aquat. Sci. 51:923–932.Google Scholar
  102. Olander, H., 1992. Subfossil chironomid stratigraphy of a small acid lake in southern Finland. Bull. geol. Soc. Finland 64 (Part 2): 183–188.Google Scholar
  103. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.Google Scholar
  104. Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279–294.Google Scholar
  105. Oliver, D. R. & M. E. Roussel, 1983. The Insects and Arachnids of Canada, Part 11: The Genera of Larval Midges of Canada-Diptera: Chironomidae. Agriculture Canada Publication 1746: 263 pp.Google Scholar
  106. Palmer, S. L., 1998. Subfossil Chironomids (Insecta: Diptera) and Climatic Change at High Elevation Lakes in the Engelmann Spruce—Subalpine Fir Zone in Southwestern British Columbia. M.Sc. thesis, Univ. of British Columbia, Vancouver, 105 pp.Google Scholar
  107. Pellatt, M. G., M. J. Smith, S. Palmer, R. W. Mathewes & I. R. Walker, 2000. Holocene treeline and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains, southwestern British Columbia. Arct. Antarct. Alp. Res. 32: 73–83.Google Scholar
  108. Quinlan, R. & J. P. Smol, 2000. Using fossil chironomid assemblages to determine changes in anoxia in south-central Ontario (Canada) shield lakes. Verh. int. Ver. Limnol. 27: 1220–1225.Google Scholar
  109. Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolim. 26: 327–342.Google Scholar
  110. Quinlan, R., J. P. Smol & R. I. Hall, 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish, aquat. Sci. 55: 587–596.Google Scholar
  111. Resh, V. H. & E. P. McElravy, 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds.) The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman & Hall, Lond.: 159–194.Google Scholar
  112. Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J. Paleolim. 25: 81–99.Google Scholar
  113. Rück, A., I. R. Walker & R. Hebda, 1998. A palaeolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake’s sediment. J. Paleolim. 19: 63–75.Google Scholar
  114. Sadler, J. P. & J. C. Jones, 1997. Chironomids as indicators of Holocene environmental change in the British Isles. In Ashworth, A. C., P. C. Buckland & J. P. Sadler (eds.) Studies in Quaternary Entomology—An Inordinate Fondness for Insects. Quat. Proc. No. 5, John Wiley & Sons, Chichester: 219–232.Google Scholar
  115. Schakau, B., 1993. Palaeolimnological studies on sediments from Lake Grasmere, South Island, New Zealand, with special reference to the Chironomidae (Diptera). Ph. D. thesis, Univ. Canterbury, Christchurch, N. Z., 364 pp.Google Scholar
  116. Schnell, Ø. A., 1998. Guidelines for the identification of chironomid larvae in the MOLAR project, final version. NIVA (Norway) Report SNO 3710–97, Project Manual, Annex A, 23 pp.Google Scholar
  117. Schnell, Ø. A. & G. G. Raddum, 1993. Past and present fauna of chironomids in remote mountain lakes. Preliminary results from the “Alpe I” project. In Giussani, G. & C. Callieri (eds.) Strategies for Lake Ecosystems beyond 2000. Proceedings from the 5th International Conference on the Conservation and Management of Lakes. Stresa, Italy: 444–447.Google Scholar
  118. Schnell, O. A. & E. Willassen, 1996. The chironomid (Diptera) communities in two sediment cores from Store Hovvatn, S. Norway, an acidified lake. Ann. Limnol. 32: 45–61.Google Scholar
  119. Schnell, Ø. A., M. Rieradevall, I. Granados & O. Hanssen, 1999. A chironomid taxa coding system for use in ecological and palaeoecological databases. NIVA (Norway) Report SNO 3710–97, Project Manual, Annex B, 24 pp.Google Scholar
  120. Sæther, O. A., 1970. Nearctic and Palaearctic Chaoborus (Diptera: Chaoboridae). Bull. Fish. Res. Bd Can. 174: 1–57.Google Scholar
  121. Shelley, D., 1995. HF burns. AASP Newsletter 28: 13–14.Google Scholar
  122. Sinclair, B. J., 1996. A review of the Thaumaleidae (Diptera: Culicomorpha) of eastern North America, including a redefinition of the genus Androprosopa Mik. Ent. Scand. 27: 361–376.Google Scholar
  123. Smith, M. J., M. G. Pellatt, I. R. Walker & R. W. Mathewes, 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.Google Scholar
  124. Stahl, J. B., 1969. The use of chironomids and other midges in interpreting lake histories. Mitt. int. Ver. Limnol. 17:111–125.Google Scholar
  125. Thienemann, A., 1921. Seetypen. Naturwissenschaften 9: 343–346.Google Scholar
  126. Treviño, M. A., G. H. Herrmann & W. L. Sprout, 1983. Treatment of severe hydrofluoric acid exposures. J. Occupational Medicine 25: 861–863.Google Scholar
  127. Uutala, A. J., 1986. Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York. Ph. D. thesis, State Univ. N. Y. Coll. Envir. Sci. For., Syracuse, 156 pp.Google Scholar
  128. Uutala, A. J., 1990. Chaoborus (Diptera: Chaoboridae) mandibles—paleolimnological indicators of the historical status offish populations in acid-sensitive lakes. J. Paleolim. 4: 139–151.Google Scholar
  129. Uutala, A. J. & J. P. Smol, 1996. Paleolimnological reconstructions of long-term changes in fisheries status in Sudbury area lakes. Can. J. Fish, aquat. Sci. 53: 174–180.Google Scholar
  130. Uutala, A. J., N. D. Yan, A. S. Dixit, S. S. Dixit & J. P. Smol, 1994. Paleolimnological assessment of damage to fish communities in three acidic, Canadian Shield lakes. Fish. Res. 19: 157–177.Google Scholar
  131. Velle, G., 1998. A Paleoecological Study of Chironomids (Insecta: Diptera) with Special Reference to Climate. Cand. Scient, thesis, Univ. Bergen, Bergen, 63 pp.Google Scholar
  132. Verschuren, D., 1994. Sensitivity of tropical-African aquatic invertebrates to short-term trends in lake level and salinity: a paleolimnological test at Lake Oloidien, Kenya. J. Paleolim. 10: 253–263.Google Scholar
  133. Verschuren, D., 1996. Comparative paleolimnology in a system of four shallow tropical lake basins. In Johnson, T. C. & E. O. Odada (eds.) The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon & Breach, Amsterdam: 559–572.Google Scholar
  134. Verschuren, D., 1997. Taxonomy and ecology of subfossil Chironomidae (Insecta, Diptera) from Rift Valley lakes in central Kenya. Arch. Hydrobiol./Suppl. 107: 467–512.Google Scholar
  135. Verschuren, D., H. Dumont & J. Armengol-Diaz, 1996. Utilisation de cladocères et chironomides fossiles pour réconstruire l’évolution hydrologique de leur habitat marécageux dans la tourbière de Kashiru (Burundi) depuis 40.000 ans BP. Palaeoecol. Afr. 24: 133–145.Google Scholar
  136. Verschuren, D., C. Cocquyt, J. Tibby, C. N. Roberts & P. R. Leavitt, 1999. Long-term dynamics of algal and invertebrate communities in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44: 1216–1231.Google Scholar
  137. Verschuren, D., K. R. Laird & B. F. Cumming, 2000a. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403: 410–414.Google Scholar
  138. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000b. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.Google Scholar
  139. Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  140. Walker, I. R., 1988. Late-Quaternary Palaeoecology of Chironomidae (Diptera: Insecta) from Lake Sediments in British Columbia. Ph. D. Thesis, Simon Fraser Univ., Burnaby, 204 pp.Google Scholar
  141. Walker, I. R., 1991. Modern assemblages of arctic and alpine Chironomidae as analogues for late-glacial communities. Hydrobiologia 214: 223–227.Google Scholar
  142. Walker, I. R., 1993. Paleolimnological biomonitoring using freshwater benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds.) Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, N. Y: 306–343.Google Scholar
  143. Walker, I., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds.) The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman & Hall, Lond.: 405–422.Google Scholar
  144. Walker, I. R., 1996–2000. The WWW Field Guide to Subfossil Midges. ( Scholar
  145. Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27: 258–263.Google Scholar
  146. Walker, I. R. & R. W. Mathewes, 1989. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.Google Scholar
  147. Walker, I. R. & C. G. Paterson, 1985. Efficient separation of subfossil Chironomidae from lake sediments. Hydrobiologia 122: 189–192.Google Scholar
  148. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991a. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish, aquat. Sci. 48: 975–987.Google Scholar
  149. Walker, I. R., R. J. Mott & J. P. Smol, 1991b. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  150. Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): Quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish, aquat. Sci. 52: 950–960.Google Scholar
  151. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.Google Scholar
  152. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Ent. scand. Suppl. 19: 457 pp.Google Scholar
  153. Wilson, S. E., I. R. Walker, R. J. Mott & J. P. Smol, 1993. Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Climate Dynamics 8: 177–187.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ian R. Walker
    • 1
  1. 1.Departments of Biology, and Earth and Environmental SciencesOkanagan University CollegeKelownaCanada

Personalised recommendations