Cladocera and Other Branchiopod Crustaceans

  • Atte Korhola
  • Milla Rautio
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 4)


Lake sediments contain a variety of organic and inorganic remains that may be used to track the history of a lake or its catchment. Shells, head-shields, post-abdomens and claws of Cladocera are among the most frequently found animal remains in sedimentary deposits. They have played an important role in providing information on various environmental events and disturbances affecting lake status, such as climatic changes, trophic oscillations, acidification, and water-level changes. Yet, one major problem has been to relate sediment core findings to animal ecology. As in the case of other organism groups, many contradictory records and opinions have been presented concerning their paleoecology and indicator value of cladocerans.


Cladocera evolution habitat ecology taxonomy fossil remains applications to paleoecology training set transfer functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhonen, P., 1970. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Comm. Biol. 35: 1–9.Google Scholar
  2. Alhonen, P., 1972. Gallträsket: The geological development and palaeolimnology of a small, polluted lake in Southern Finland. Comm. Biol. 57: 1–36.Google Scholar
  3. Alhonen, P., 1985. Lake restoration: a sediment limnological approach. Aqua Fenn. 15: 269–273.Google Scholar
  4. Allan, J. D., 1976. Life history patterns in Zooplankton. Am. Nat. 110: 165–180.Google Scholar
  5. Allan, J. D. & C. E. Goulden, 1980. Some aspects of reproductive variation among freshwater zoo-plankton. In Kerfoot, C. W. (ed.) Evolution and Ecology of Zooplankton Communities. University Press of New England: 388–410.Google Scholar
  6. Amoros, C., 1980. Structure et fonctionnement des écosystèmes du Haut-Rhône francais. 15 — Structure des peuplements de Cladocéres et Copépodes de deus anciens méandres d’âges différents. Acta Oecol., Ecol. Gen. 1: 193–208.Google Scholar
  7. Amoros, C. & G. van Urk, 1989. Paleoecological analyses of large rivers: some principles and methods. In Petts, G. (ed.) Historical Change of Large Alluvial Rivers. John Wiley and Sons, New York: 143–157.Google Scholar
  8. Arzet, K., D. Krause-Dellin & C. Stenberg, 1986. Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains, and sediment chemistry. In Smol, J. P., R. W. Battarbee, R. W. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk Dordrecht, Netherlands: 227–250.Google Scholar
  9. Binford, M. W., 1982. Ecological history of Lake Valencia, Venezuela: interpretation of animal microfossil and some chemical, physical, and geological features. Ecol. Monogr. 52: 307–333.Google Scholar
  10. Binford, M. W., 1986. Ecological correlates of net accumulation rates of Cladocera remains in lake sediments. Hydrobiologia 143: 123–128.Google Scholar
  11. Birks, H. H., M. C. Whiteside, D. M. Stark & R. C. Bright, 1976. Recent palaeolimnology of three lakes in north-western Minnesota. Quat. Res. 6: 249–272.Google Scholar
  12. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data. Quaternary Science Association, Cambridge: 161–254.Google Scholar
  13. Birks, H. J. B., 1998. Numerical tools in palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332.Google Scholar
  14. Black, A. R., 1993. Predator-induced phenotypic plasticity in Daphnia pulex Life history and morphological responses to Notonecta and Chaoborus. Limnol. Oceanogr. 38: 986–996.Google Scholar
  15. Bos, D., 2000. Sedimentary cladoceran remains, a key to interpreting past changes in nutrients and trophic interactions. PhD thesis, Queen’s University, Kingston, Ontario, 191 pp.Google Scholar
  16. Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between Zooplankton, conductivity, and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt. Res. 5: 1–15.Google Scholar
  17. Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicaors of salinity and lake level. Hydrobiologia 392: 129–141.Google Scholar
  18. Boucherie, M. M., 1982. An ecological history of Elk Lake, Clearwater Co., Minnesota, based on Cladocera remains, Ph.D. thesis, Indiana Univeristy, 128 pp.Google Scholar
  19. Boucherie, M. M. & H. Ziillig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.Google Scholar
  20. Bradbury, J. P. & M. C. Whiteside, 1980. Paleolimnology of two lakes in the Kutlan Glacier region, Yukon Territory, Canada. Quat. Res. 14: 149–168.Google Scholar
  21. Brakke, D. F., 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments. III Cladoceran community structure and stratigraphy. In Drablos, D. & A. Tollan (eds.) Ecological Impact of Acid Precipitation. SNSF projet, Oslo, Norway: 272–273.Google Scholar
  22. Brakke, D. F, R. B. Davis & K. H. Kenlan, 1984. Acidification and changes over time in chydorid cladocera assemblage of New England lakes. In Hendrey, G. R. (ed.) Early Biotic Responses to Advancing Lake Acidification. Butterworth, Boston (MA): 85–104.Google Scholar
  23. Brehm, V, G. Krasske & W. Krieger, 1948. Subfossile tierische Reste und Algen in Schwarzee bei Kitzbühel. Österr. Bot. Zeit. 95: 74–83.Google Scholar
  24. Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Wat. Air Soil. Pollut. 44: 387–414.Google Scholar
  25. Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Can. J. Fish. Aquat. Sci. 55: 1093–1103.Google Scholar
  26. Brooks, J. L., 1957. The systematics of North American Daphnia. Mem. Conn. Acad. Arts Sci. 13: 1–180.Google Scholar
  27. Brooks, J. L., 1959. Cladocera. In Edmondson, W. T. (ed.) Freshwater Biology. 2nd Edition. John Wiley & Sons: 587–656.Google Scholar
  28. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.Google Scholar
  29. Carter, J. C. H., M. J. Dadswell, J. C. Rolf & W. G. Sprules, 1980. Distribution and zoogeography of planktonic crustaceans and dipterans in glaciated eastern North America. Can. J. Zool. 58: 1355–1387.Google Scholar
  30. Carvalho, G. R., 1987. The clonal ecology of Daphnia magna II. Thermal differentiation among seasonal clones. J. Anim. Ecol. 56: 469–478.Google Scholar
  31. Carvalho, G. R. & H. G. Wolf, 1989. Resting eggs of lake-Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshwat. Biol. 22: 459–470.Google Scholar
  32. Charles, D. F. & J. P. Smol, 1994. Long-term chemical changes in lakes: quantitative inferences from biotic remains in the sediment record. In Baker, L. (ed.) Environmental Chemistry of Lakes and Reservoirs. Advances in chemistry series 237, Washington, DC. Am. Chem. Soc: 3–31.Google Scholar
  33. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S.A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent acidification in the Adirondack Mountains, N.Y. J. Paleolim. 3: 195–241.Google Scholar
  34. Chengalath, R., 1982. A faunistic and ecological survey of the littoral Cladocera of Canada. Can J. Zool. 60: 2668–2682.Google Scholar
  35. Chengalath, R. & B. J. Hann, 1981. Two new species of Alona (Chydoridae, Cladocera) from western Canada. Can. J. Zool. 59: 377–389.Google Scholar
  36. Colbourne, J. K., P. D. N. Hebert & D. J. Taylor, 1997. Evolutionary origins of phenotypic diversity in Daphnia. In Givnish, T. J. & K. J. Systma (eds.) Molecular Evolution and Adaptive Radiation. Cambridge University Press: 163–189.Google Scholar
  37. Cotten, C. A., 1985. Cladoceran assemblages related to lake conditions in Eastern Finland. Ph.D. thesis, Indiana University, Bloomington, 96 pp.Google Scholar
  38. Crease, T. J. & D. J. Taylor, 1998. The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. Mol. Biol. Evol. 15: 1430–1446.Google Scholar
  39. Crisman, T. L. & D. R. Whitehead, 1978. Palaeolimnological studies on small New England (U. S. A.) ponds. II Cladoceran community responses to trophic oscillations. Pol. Arch. Hydrobiol. 25: 75–86.Google Scholar
  40. Dearing, J., 1986. Core correlation and total sediment influx. In Berglund, B. (ed.) Handbook of Palaeoecology and Palaeohydrology, John Wiley and Sons, New York: 247–270.Google Scholar
  41. DeCosta, J., 1964. Latitudinal distribution of chydorid Cladocera in the Mississippi Valley, based on their remains in surficial lake sediments. Invest. Indiana Lakes & Streams 6: 65–101.Google Scholar
  42. DeCosta, J., 1968. The history of the Chydorid (Cladocera) community of a small lake in the Wind River Mountains, Wyoming, USA. Arch. Hydrobiol. 64: 400–425.Google Scholar
  43. DeCosta, J., 1975. The crustacean plankton of an acid reservoir. Verh. Int. Ver. Limnol. 19:1805–1813.Google Scholar
  44. DeCosta, J. & A. Janicki, 1978. Population dynamics and age structure of Bosmina longirostris in an acid water impoundment. Verh. int. Ver. Limnol. 20: 2479–2483Google Scholar
  45. Deevey, E. S., 1964. Preliminary account of fossilization of Zooplankton in Rogers Lake. Verh. int. Ver. Limnol. 115:981–992.Google Scholar
  46. Deevey, E. S., 1969. Cladoceran populations of Rogers Lake, Connecticut, during late- and postglacial time. Mitt. int. Ver. Limnol. 17: 56–63.Google Scholar
  47. Deevey, E. S. & G. B. Deevey, 1971. The American species of Eubosmina Seligo (Crustacea, Cladocera). Limnol. Oceanogr. 16: 201–218.Google Scholar
  48. De Melo, R. D. & P. D. N. Hebert, 1994. A taxonomic reevaluation of the North American Bosminidae. Can. J. Zool. 72: 1808–1825.Google Scholar
  49. Dexter, R. W, 1959. Anostraca. In Edmondson, W. T. (ed.) Freshwater Biology. John Wiley & Sons, New York: 558–571.Google Scholar
  50. Dodson, S. I. & D. G. Frey, 1991. Cladocera and Other Branchipoda. In Thorpe, J. H. & A. P. Covich (eds.) Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc. Toronto: 723–786.Google Scholar
  51. Dodson, S. I. & T. Hanazato, 1995. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystem. Environ. Health Perspect. 103: 7–11.Google Scholar
  52. Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of clado-ceran microfossil assemblages at Kråkenes, western Norway, with quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76.Google Scholar
  53. DuMont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.Google Scholar
  54. Eder, E., W. Hödl & R. Gottwald, 1997. Distribution and phenology of large branchiopods in Austria. Hydrobiologia 359: 13–22.Google Scholar
  55. Edmondson, W. T., 1957. Trophic relations of the Zooplankton. Trans, am. mic. Soc. Vol. LXXVI, No. 3.Google Scholar
  56. Ender, A., K. Schwenk, T. Stadler, B. Streit & B. Schierwater, 1996. RAPD identification of microsatellites in Daphnia. Mol. Ecol. 5: 437–442.Google Scholar
  57. Fernando, C. H., 1980. The freshewater Zooplankton of Sri Lanka, with discussion of tropical freshwater Zooplankton composition. Int. Revue ges. Hydrobiol. 65: 85–125.Google Scholar
  58. Flössner, D., 1964. Zur Cladocerenfauna des Stechlinsee-Gebietes. IL Ökologische Untersuchungen über die litoralen Arten. Limnologica 2: 35–103.Google Scholar
  59. Flössner, D., 1972. Krebstiere, Crustacea. Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. In: Die Tierwelt Deutschlands. G. Fischer, Jena, 501 pp.Google Scholar
  60. Flössner, D., 1990. Die Geschichte der Cladocerenfauna des Kleinen Barsch-Sees, eines sauren, kalkarmen Moorweihers im mitteleuropäishen Flachland. Limnologica 21: 125–135.Google Scholar
  61. Flössner, D. & K. Kraus, 1977. On the variability and taxonomy of Pleuroxus denticulatus Birge (Cladoecra: Chydoridae). J. Fish Res. Bd Can. 34: 463–476.Google Scholar
  62. Frey, D. G., 1958. The late-glacial cladoceran fauna of a small lake. Arch. Hydrobiol. 54: 209–275.Google Scholar
  63. Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chyoridae (Cladocera). Int. Revue ges. Hydrobiol. 44: 27–50.Google Scholar
  64. Frey, D. G., 1960. The ecological significance of cladoceran remains in lake sediments. Ecology 41: 684–698.Google Scholar
  65. Frey, D. G., 1962. Cladocera from the Eemian Interglacial of Denmark. J. Palaeontol. 36: 1133–1154.Google Scholar
  66. Frey, D. G., 1965. Differentation of Alona costata Sars from two related species (Cladocera, Chydoridae). Crustaceana 8: 159–173.Google Scholar
  67. Frey, D. G., 1967. Cladocera in space and time. Proceedings of Symposium on Crustacea Part I: 1–9.Google Scholar
  68. Frey, D. G., 1976. Interpretation of Quaternary paleoecology from Cladocera and midges, and prognosis regarding usability of other organisms. Can. J. Zool. 54: 2208–2226.Google Scholar
  69. Frey, D. G., 1979. Cladocera Analysis. In Berglund, B. (ed.) Palaeohydrological Changes in the Temperate Zone in the Last 15,000 Years. IGCP Project 158 B. Lake and mire environments. Vol II. Univ. of Lund, Sweden: 227–257.Google Scholar
  70. Frey, D. G., 1980. On the plurality of Chydorus sphaericus (O.F. Müller) (Cladocera, Chydoridae), and designation of a neotype from Sjœlsø, Denmark. Hydrobiologia 69: 83–123.Google Scholar
  71. Frey, D. G., 1982. Relocation of Chydorus barroisi and related species (Cladocera, Chydoridae) to a new genus and descriptions of two new species. Hydrobiologia 86: 231–269.Google Scholar
  72. Frey, D. G., 1985. A new species of the Chydorus sphaericus group (Cladocera, Chydoridae) from western Monatna. Int. Revue ges. Hydrobiol. 69: 3–20.Google Scholar
  73. Frey, D. G., 1986a. Cladocera Analysis. In Berglund, B. (ed.) Handbook of Palaeoecology and Palaeohydrology. John Wiley and Sons, New York: 667–692.Google Scholar
  74. Frey, D. G., 1986b. The non-cosmopolitanism of chydorid cladocera: implications for biogeography and evolution. In Gore, R. H. & K. L. Heck (eds.) Crustacean Biogeography. A. A. Balkema, Rotterdam: 237–256.Google Scholar
  75. Frey, D., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.Google Scholar
  76. Frey, D., 1993. The penetration of Cladocera into saline waters. Hydrobiologia 267: 233–248.Google Scholar
  77. Frey, D. G. & B. J. Hann, 1985. Growth in Cladocera. In Wenner, A. M. (ed.) Crustacean Issues, Vol. 2. Crustacean Growth. A. A. Balkema, Rotterdam: 315–335.Google Scholar
  78. Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwat. Biol. 10: 41–45.Google Scholar
  79. Fryer, G. & O. Forshaw, 1979. The freshwater Crustacea of Rhum (Inner Hebrides)—a faunistic and ecological survey. Biol. J. Linnean Soc. 11: 333–367.Google Scholar
  80. Fryer, G., 1993. The Freshwater Fauna of Yorkshire. A Faunistic and Ecological Survey. Yorkshire Naturalists’ Union & Leeds Philosophical & Literary Society, 312 pp.Google Scholar
  81. George, D. & G. Harris, 1985. The effect of climate on long-term changes in the crustacean biomass of Lake Windermere, UK. Nature 316: 536–539.Google Scholar
  82. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr. 45: 22–30.Google Scholar
  83. Goss, B. L. & D. L. Bunting, 1983. Daphnia development and reproduction: Responses to temperature. J. Therm. Biol. 8: 375–380.Google Scholar
  84. Goulden, C. E., 1964. The history of the Cladoceran fauna of Esthwaite water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.Google Scholar
  85. Goulden, C. E., 1969. Interpretative studies of cladoceran microfossils in lake sediments. Mitt. int. Ver. Limnol. 17: 43–55.Google Scholar
  86. Goulden, C. E. & D. G. Frey, 1963. The occurence and significance of lateral head pores in the Genus Bosmina (Cladocera). Int. Revue ges. Hydrobiol. 48: 513–522.Google Scholar
  87. Hairston, N. G. Jr., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedke, J. M. Fischer, J. A. Fox & D. M. Post, 1999. Rapid evolution revealed by dormant eggs. Nature: 401–446.Google Scholar
  88. Hann, B. J., 1980. Occurrence and distribution of littoral Chydoridae (Crustacea, Cladocera) in Ontario, Canada, and taxonomic notes on some species. Can. J. Zool. 59: 1465–1474.Google Scholar
  89. Hann, B. J., 1989. Cladocera. Methods in Quaternary Ecology. Geosci. Canada 16: 17–26.Google Scholar
  90. Hann, B. J. & P. Karrow, 1984. Pleistocene paleoecology of the Don and Scarborough Formations, Toronto, Canada, based on cladoceran microfossils at the Don Valley Brickyard. Boreas 13: 377–391.Google Scholar
  91. Hann, B. J. & B. G. Warner, 1987. Late Quaternary Cladocera from coastal British Columbia, Canada: A record of climatic or limnologic change? Arch. Hydrobiol. 110: 161–177.Google Scholar
  92. Hann, B. J. & P. Karrow, 1993. Comparative analysis of cladoceran microfossils in the Don and Scarborough Formations, Toronto, Canada. J. Paleolim. 9: 223–241.Google Scholar
  93. Hann, B. J., P. R. Leavitt & P. S. S. Chang, 1994. Cladocera community response to experimental eutrophication in Lake 227 as recorded in laminated sediments. Can. J. Fish. Aquat. Sci. 51: 2312–2321.Google Scholar
  94. Hanner, R. H., 1997. Taxonomic problems with phylogenetic solutions derived from the integration of biochemical, morphological and molecular data. Ph.D. thesis. University of Oregon, USA. ( Scholar
  95. Harmsworth, R. V, 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.Google Scholar
  96. Harmsworth, R. V. & M. C. Whiteside, 1968. Relation of Cladoceran remains in lake sediments to primary productivity of lakes. Ecology 49: 998–1000.Google Scholar
  97. Hathaway, S. A. & M. A. Simovich, 1996. Factors affecting the distribution and co-occurrence of two southern californian anostracans (Branchiopoda), Branchinecta sandiegonensis and Streptocephalus woottoni. J. Crustacean Biol. 16: 669–677.Google Scholar
  98. Havas, M. & B. O. Rosseland, 1995. Response of Zooplankton, benthos, and fish to acidification: an overview. Wat., Air Soil Pollut. 85: 51–62.Google Scholar
  99. Havens, K. E. & J. DeCosta, 1987. The role of aluminium contamination in determining phytoplankton and Zooplankton responses to acidification. Wat., Air Soil Pollut. 33: 277 – 293.Google Scholar
  100. Hebert, P. D. N. & B. J. Hann, 1986. Patterns in the composition of arctic tundra pond microcrustacean communities. Can. J. Fish. Aquat. Sci. 43: 1416–1425.Google Scholar
  101. Henning, M., H. Herte, H. Wall & J.-G. Kohl, 1991. Strain-specific influence of Microcystis aeruginosa on food ingestion and assimilation of some cladocerans and copepods. Int. Revue ges. Hydrobiol. 76: 37–45.Google Scholar
  102. Heywood, R. B., 1983. Inland waters. In Laws, R. M. (ed.) Antarctic Ecology. Academic Press: 279–344.Google Scholar
  103. Hofmann, W., 1977. Bosmina (Eubosmina) populations of the Grosser Segeberger See during late glacial and postglacial times. Arch. Hydrobiol. 3: 349–359.Google Scholar
  104. Hofmann, W., 1978. Bosmina (Eubosmina) populations of Großer Plöner See and Schöhsee lakes during late-glacial and postglacial times. Pol. Arch. Hydrobiol. 25: 167–176.Google Scholar
  105. Hofmann, W., 1983. Stratigraphy of Cladocera and Chironomidae in a core from a shallow North German lake. Hydrobiologia 103: 235–239.Google Scholar
  106. Hofmann, W., 1984. Postglacial morphological variation in Bosmina longispina Leydig (Crustacea, Cladocera) from the Grosser Plöner See (north Germany) and its taxonomic implications, Z. zool. Syst. Evolut.-forsch. 22: 294–301.Google Scholar
  107. Hofmann, W., 1986. Developmental history of the Grosser Plöner See and the Schöhsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol., Suppl. Bd. 74: 259–287.Google Scholar
  108. Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321.Google Scholar
  109. Hofmann, W., 1993. Dynamics of a littoral Cladorcera assemblage under the influence of climatic and water depth changes from Alleröd to Subboreal. Verh. int. Ver. Limnol. 25: 1095–1101.Google Scholar
  110. Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.Google Scholar
  111. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J. Paleolim. 19: 55–62.Google Scholar
  112. Hrbácek, J., 1969. On the possibility of estimating predation pressure and nutrition level of populations of Daphnia (Crust., Cladoc.) from their remains in sediments. Mitt. int. Ver. Limnol. 17: 269–274.Google Scholar
  113. Huttunen, P. & J. Turkia, 1990. Surface sediment diatom assemblages and lake acidity. In Kauppi, P., P. Anttila & K. Kenttämies (eds.) Acidification in Finland. Berlin/Heidelberg: Springer-Verlag: 995–1008.Google Scholar
  114. Huttunen, P., J. Meriläinen, C. Cotton & J. Rönkkö, 1988. Attempts to reconstruct lakewater pH and colour from sedimentary diatoms and Cladocera. Int. Ver. Limnol. 23: 870–873.Google Scholar
  115. Hyvärinen, H. & P. Alhonen, 1994. Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. The Holocene 4: 251–258.Google Scholar
  116. Järvinen, M. & K. Salonen, 1998. Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Can. J. Fish. Aquat. Sci. 55: 2562–2571.Google Scholar
  117. Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary Zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 35: 115–127.Google Scholar
  118. Jurasz, W. & C. Amoros, 1991. Ecological succession in a former meander of the Rhône River, France, reconstructed by Cladocera remains. J. Paleolim. 6: 113–122.Google Scholar
  119. Kerfoot, W. C., 1974. Net accumulation rates and the history of cladoceran communities. Ecology 55:51–61.Google Scholar
  120. Kerfoot, W. C., 1977. Implications of copepod predation. Limnol. Oceanogr. 22: 316–325.Google Scholar
  121. Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62: 216–233.Google Scholar
  122. Kerfoot, W. C. & M. Lynch, 1987. Branchiopod communities: Associations with planktivorous fish in space and time. In Kerfoot, M. C. & A. Sih (eds.) Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, 386 pp.Google Scholar
  123. Kerfoot, W. C. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods: Implications for detrivory and herbivory. Limnol. Oceanogr. 36: 1107–1123.Google Scholar
  124. King, J. L., M. A. Simovich & R. C. Brusca, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.Google Scholar
  125. Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo Bog, Southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. A. III. 155: 1–40.Google Scholar
  126. Korhola, A., 1992. The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J. Paleolim. 7: 1–22.Google Scholar
  127. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.Google Scholar
  128. Korhola, A. & M. Tikkanen, 1991. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20: 333–356.Google Scholar
  129. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43–54.Google Scholar
  130. Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hy, N. Rose, A. Lami & N. G. Cameron, in press. A multi-proxy analysis of climate impacts on recent development of subarctic Lake Saanajärvi in Finnish Lapland. J. Paleolim.Google Scholar
  131. Krause-Dellin, D. & C. Steinberg, 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia 143: 129–143.Google Scholar
  132. Lewis, W. M., 1995. Tropical lakes: How latitude makes a difference. In Timotius, K. H. & F. Goltenboth (eds.) Tropical Limnology, Vol. 1. Springer, New York: 29–44.Google Scholar
  133. Lieder, U., 1983a. Revision of the genus Bosmina Baird, (1845) (Crustacea, Cladocera). Int. Revue ges. Hydrobiol. 68: 121–139.Google Scholar
  134. Lieder, U., 1983b. Introgression as a factor in the evolution of polytypical plankton cladocera. Int. Revue ges. Hydrobiol. 68: 269–284.Google Scholar
  135. Lieder, U., 1983c. Die Arten der Untergattung Eubosmina Seligo, 1900 (Crustacea, Cladocera, Bosminidae). Mitt. Zool. Mus. Berlin 59: 195–292.Google Scholar
  136. Lieder, U., 1986. Bosmina and Daphnia taxonomically critical groups among the Cladocera (Crustacea Phyllopoda). Limnologica 17: 53–66.Google Scholar
  137. Löffler, H., 1969. High altitude lakes in the Mt. Everest region. Verh. int. Ver. Limnol. 17: 373–385.Google Scholar
  138. Löffler, H., 1993. Anostraca, Notostraca, Laevicaudata and Spinicaudata of the Pannonian region and in its Austrian area. Hydrobiologia 264: 169–174.Google Scholar
  139. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  140. Lotter, A. F, H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.Google Scholar
  141. Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran asemblages. Palaeogr. Palaeoeclim. Palaeoecol. 159: 349–361.Google Scholar
  142. LRC Core Facility Handbook, 1997. Information, Procedures and Training Manual. Limnological Research Center, University of Minnesota, Scholar
  143. Marcus, N. H., R. Lutz, W. Brunnet & P. Cable, 1994. Age, viability, and vertical distribution of Zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol. Oceanogr. 39:154–158.Google Scholar
  144. Marmorek, D. R. & J. Korman, 1993. The use of Zooplankton in a biomonitoring program to detect lake acidification and recovery. Wat., Air Soil Pollut. 69: 223–241.Google Scholar
  145. Megard, R. O., 1967. Three new species of Alona (Cladocera, Chydoridae) from the United States. Int. Revue ges. Hydrobiol. 52: 37–50.Google Scholar
  146. Meijering, W. P. D., 1983. On the occurrence of “arctic” Cladocera with special reference to those along the Strait of Belle Isle (Quebec, Labrador, Newfoundland). Int. Revue ges. Hydrobiol. 68: 885–893.Google Scholar
  147. Mikulski, J. S., 1978. Man impact upon Goplo Lake as reflected in cladoceran-community remnants in sediments. Pol. Arch. Hydrobiol. 25: 291–295.Google Scholar
  148. Moghraby, A. I., 1977. A study of diapause of Zooplankton in a tropical river—the Blue Nile. Freshwat. Biol. 7:207–212.Google Scholar
  149. Moore, M. V., C. F. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for Zooplankton assemblages in temperate lakes. Arch. Hydrobiol. 135: 289–319.Google Scholar
  150. Moritz, C., 1987. A note on the hatching and viability of Ceriodaphnia ephippia collected from lake sediments. Hydrobiologia 145: 309–314.Google Scholar
  151. Mueller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana Lakes. Invest. Indiana Lakes & Streams 1: 1–63.Google Scholar
  152. Müller, H., 1985. The niches of Bosmina coregoni and Bosmina longirostris in the ecosystem of Lake Constance. Verh. int. Ver. Limnol. 17: 56–63.Google Scholar
  153. Nauwerck, A., 1988. Veränderungen in Zooplankton des Mondsees 1943–1988. Ber. Nat.-Med. Ver. Salzburg 9: 101–133.Google Scholar
  154. Nauwerck, A., 1991. The history of the genus Eubosmina in Lake Mondsee (Upper Austria). Hydrobiologia 225: 87–103.Google Scholar
  155. Nilssen, J. P., 1978. Selective vertebrate and invertebrate predation—some palaeolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.Google Scholar
  156. Nilssen, J. & P. Larsson, 1980. The systematical position of the most common Fennoscandian Bosmina (Eubosmina). Sond. Zeitschr. Zool. Syst. Evol. B 18, Heft 1: 62–68.Google Scholar
  157. Nilssen, J. P. & S. Sandøy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analysis from lakes in Norway, Scotland and Sweden. Phil. Trans, r. Soc., Lond. B. 327: 299–309.Google Scholar
  158. Nilssen, J. P., G. Halvorsen & J. Melåen, 1980. Seasonal divergence of Bosmina morphs. Int. Revue ges. Hydrobiol. 65: 507–516.Google Scholar
  159. Ojaveer, H. & A. Lumberg, 1995. On the role of Cercopagis (Cercopagis) pengoi (Ostroumov) in Parmi Bay and the NE part of the Gulf of Riga ecosystem. Proc. Estonian Acad. Sci. Ecol. 5: 20–25.Google Scholar
  160. Patalas, K., 1964. The crustacean plankton communities in 52 lakes of different altitudinal zones of Northern Colorado.-Verh. int. Ver. Limnol. 15: 719–726.Google Scholar
  161. Patalas, K., 1990. Diversity of the Zooplankton communities in Canadian lakes as a function of climate. Verh. int. Ver. Limnol. 24: 360–368.Google Scholar
  162. Patalas, J. & Patalas, K. 1966: The crustacean plankton communities in Polish lakes. Verh. int. Ver. Limnol. 16: 204–215.Google Scholar
  163. Paterson, M. J., 1994. Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). J. Paleolim. 11: 189–200.Google Scholar
  164. Pennak, R. W., 1989. Fresh-Water Invertebrates of the United States: Protozoa to Mollusca. John Wiley and Sons, Inc., Toronto, Canada: 369–409.Google Scholar
  165. Rautio, M., 1998. Community structure of crustacean Zooplankton in subarctic ponds—effects of altitude and physical heterogenity. Ecography 21: 327–335.Google Scholar
  166. Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean Zooplankton communities, their seasonal variability and representativeness in the sediment of subarctic Lake Saanajärvi. J. Limnol. 59: 81–96.Google Scholar
  167. Rautio, M., 2001. Zooplankton assemblages related to environmental characteristics in treeline ponds in Finnish Lapland. Arct. Antarct. Alp. Res. 33: 289–298.Google Scholar
  168. Reynolds, J. D., 1979. Crustacean Zooplankton of some saline lakes of central British Columbia. Syesis 12: 169–173.Google Scholar
  169. Rothaupt, K. O., 1990. Resource competition of herbivorous Zooplankton: a review of approaches and perspectives. Arch. Hydrobiol. 118: 1–29.Google Scholar
  170. Rowe, C. L. & P. D. N. Hebert, 1999. Cladoceran Web Site. University of Guelph. Google Scholar
  171. Salo, J., M. Walls, M. Rajasilta, J. Sarvala, M. Räsänen & V.-R Salonen, 1989. Fish predation and reduction in body size in a Cladoceran population: palaeoecological evidence. Freshwat. Biol. 21:217–221.Google Scholar
  172. Sand0y, S. & J. P. Nilssen, 1986. A geographical survey of littoral crustacea in Norway and their use in paleolimnology. Hydrobiologia 143: 277–286.Google Scholar
  173. Sarvala, J. & S. Halsinaho, 1990. Crustacean Zooplankton of Finnish forest lakes in relation to acidity and other environmental factors. In Kauppi, P., P. Anttila & K. Kenttämies (eds.) Acidification in Finland. Springer-Verlag, Berlin: 1009–1027.Google Scholar
  174. Sarmaja-Korjonen, K., 1999. Headshields of ephippial Chydorus piger Sars (Cladocera, Chydoridae) females from northern Finnish Lapland: a long period of gamogenesis? Hydrobiologia 390: 11–18.Google Scholar
  175. Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. J. Paleolim. 22: 277–290.Google Scholar
  176. Sarmaja-Korjonen, K. & H. Hyvärinen, 1999. Cladoceran and diatom stratigraphy of calcerous lake sediments from Kuusamo, NE Finland. Indications of Holocene lake-level changes. Fennia 177: 55–70.Google Scholar
  177. Sarmaja-Korjonen, K., M. Hakojärvi & A. Korhola, 2000. Subfossil remains of an unknown Chydorid (Anomopoda: Chydoridae) from Finland. Hydrobiologia 436: 165–169.Google Scholar
  178. Schwenk, K., A. Ender & B. Streit, 1995. What can molecular markers tell us about the evolutionary history of Daphnia species complexes? Hydrobiologia 307: 1–7.Google Scholar
  179. Scourfield, D. J. & J. P. Harding, 1966. A key to the British Freshwater Cladocera. Freshwater Biological Association, Windermere. Third edition, 1966. (Reprinted 1994), 61 pp.Google Scholar
  180. Sergeev, V. & W. D. Williams, 1983. Daphniopsis pusilla Serventy (Cladocera:Daphniidae), in important element in the fauna of Australian salt lakes. Hydrobiologia 100: 293–300.Google Scholar
  181. Smirnov, N. N., 1971a. Fauna of the U.S.S.R., Crustacea. Academy of Sciences of the U.S.S.R. 1(2). Translated from Russian, Israel Program for Scientific Translations, Jerusalem, 1974, New Series no. 101.Google Scholar
  182. Smirnov, N. N., 1971b. A new species of Archedaphnia (Cladocera, Crustacea) from Jurassic deposits of Transbaykal. Paleont. J. (In Russian) 5: 391–392.Google Scholar
  183. Smirnov, N. N., 1978. Metody I nekotoryye resul’taty istoricheskoy biotsenologii vetvistousykh rakoobraznyhk. In Polyakov, G. D. (ed.) Ekologiya Soobshchestv Ozera Glubokogo. Izdatel’stvo Nauka, Moscow: 105–173.Google Scholar
  184. Steinberg, C., H. Hartmann, K. Arzet & D. Krause-Dellin, 1988. Paleoindication of acidification in Kleiner Arbersee (Federal Republic of Germany, Bavarian Forest) by chydorids, chrysophytes, and diatoms. J. Paleolim. 1: 149–157.Google Scholar
  185. Stemberger, R., A. Herlihy, D. Kugler & S. Paulsen, 1996. Climatic forcing on Zooplankton richness in lakes of the northeastern United States. Limnol. Oceanogr. 41: 1093–1101.Google Scholar
  186. Synerholm, C., 1979. The Chydorid cladocera from surface lake sediments in Minnesota and North Dakota. Arch. Hydrobiol. 86: 137–151.Google Scholar
  187. Szeroczynska, K., 1991. Impact of prehistoric settlements on the Cladocera in the sediments of Lakes Suszek, Bledowo and Skrzetuszewskie. Hydrobiologia 225: 102–114.Google Scholar
  188. Szeroczynska, K., 1998. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeogr. Palaeoclim. Palaeoecol. 140: 335–345.Google Scholar
  189. Thorp, J. H. & A. P. Covich, 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc., 911 pp.Google Scholar
  190. Tolonen, A., 1998. Size-specific food selection and growth in benthic whitefish, Coregonus lavaretus (L.), in a subarctic lake. Boreal Env. Res. 2: 387–399.Google Scholar
  191. Tsukada, M., 1967. Fossil Cladocera in Lake Nojiri and ecological order. Quat. Res. 6: 101–110.Google Scholar
  192. Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.Google Scholar
  193. Viitasalo, M. & T. Katajisto, 1994. Mesozooplankton resting eggs in the Baltic Sea: identification and vertical distribution in laminated and mixed sediments. Marine Biol. 120: 455–465.Google Scholar
  194. Viitasalo, M., I. Vuorinen & S. Saesmaa, 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. J. Plankton Res. 17: 1857–1878.Google Scholar
  195. Walossek, D., 1993. The Upper Cambrian Rehbachiella kinnekullensis Müller, 1983, and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata 32: 1–202.Google Scholar
  196. Wetzel, R. G., 1983. Limnology. 2nd Edition. Saunders College Publishing, Fort Worth, 767 pp.Google Scholar
  197. Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol. Monogr. 40:79–118.Google Scholar
  198. Whiteside, M. C. & R. V. Harmsworth, 1967. Species diversity in chydorid (Cladocera) communities. Ecology 48: 644–677.Google Scholar
  199. Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogr. Palaeoeclim. Palaeoecol. 62: 405–412.Google Scholar
  200. Whiteside, M., J. Williams & C. White, 1978. Seasonal abundance and pattern of chydorid cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.Google Scholar
  201. Yan, N. D. & R. Strus, 1980. Crustacean Zooplankton communities of acidic, metal-contaminated lakes near Sudbury, Ontario. Can. J. Fish. Aquat. Sci. 37: 2282–2293.Google Scholar
  202. Zaret, M., 1980. The effects of prey motion on planktivore choice. In Kerfoot, W. C. (ed.) Evolution and Ecology of Zooplankton Communities. New England: 594–603.Google Scholar
  203. Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longimstris body-size selection versus visibility selection. Ecology 56: 232–237.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Atte Korhola
    • 1
  • Milla Rautio
    • 1
  1. 1.Department of Ecology and Systematics, Division of HydrobiologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations