Advertisement

Summary

Phytolith analysis of lake records is an important and currently underutilized tool of paleoenvironmental reconstruction. If investigators choose to undertake the time-consuming task of constructing modern phytolith reference collections for their study regions, their efforts are likely to be rewarded because phytoliths can be useful in the identification of specific taxa. Identifications of some key indicator families and genera should be possible utilizing existing published keys and photographs.

The potential advantages of carrying out phytolith and pollen studies of a single lake record as part of a multi-proxy analysis seem to be considerable. For example, where pollen analysis is weak, as in the recognition of herbaceous and arboreal taxa of mature tropical rain forest, phytolith analysis provides significant information (Piperno, 1993). Conversely, in the recognition of woody, secondary tropical forest growth where phytolith analysis may be “silent”, pollen data come to the rescue. Phytolith studies have also significantly increased the number of taxa represented in lake profiles from the American tropical forest (e.g., Piperno, 1993), an important improvement in our attempts to decipher the history of species-rich tropical formations. Phytoliths and pollen grains are complementary avenues of paleoenvironmental reconstruction and they should be studied in tandem whenever possible.

Keywords

paleoenvironmental reconstruction phytoliths vegetational change multiproxy analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre, A., J.-D. Meunier, A.-M. Lezine, A. Vincens & D. Schwartz, 1997. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeo., Palaeoclim., Palaeoecol. 136: 213–229.Google Scholar
  2. Albert, R. M., O. Lavi, L. Estroff & S. Weiner, 1999. Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian period: A study of the sediments and phytoliths. J. Arch. Sci. 26: 1249–1260.CrossRefGoogle Scholar
  3. Boyd, W. E., C. J. Lentfer & R. Torrence, 1998. Phytolith analysis for a wet tropics environment: Methodological issues and implications for the archaeology of Garua Island, West New Britain, Papua New Guinea. Palynology 22: 213–228.Google Scholar
  4. Bozarth, S. R., 1987. Diagnostic opal phytoliths from rinds of selected Cucurbita species. Amer. Anti. 52: 607–615.Google Scholar
  5. Bozarth, S. R., 1992. Classification of opal phytoliths formed in selected dicotyledons native to the great plains. In Rapp G., Jr. & S. C. Mulholland (eds.) Phytolith Systematics: Emerging Issues, Plenum Press, New York, pp. 193–214.Google Scholar
  6. Bozarth, S. R., 1993. Biosilicate assemblages of boreal forests and Aspen parklands. In Pearsall, D. M. & D. R. Piperno (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology. The University Museum of Archaeology and Anthropology, Philadelphia, pp. 95–108.Google Scholar
  7. Brown, D. A., 1984, Prospects and limits of a phytolith key for grasses in the central United States. J. Arch. Science 11: 345–368.Google Scholar
  8. Bush, M. B., D. R. Piperno & P. A. Colinvaux, 1989. A 6,000 year history of Amazonian maize cultivation. Nature 340: 303–305.CrossRefGoogle Scholar
  9. Bush, M. B., D. R. Piperno, P. A. Colinvaux, P. E. DeOliveira, L. A. Krissek, M. C. Miller & W. E. Rowe, 1992. A 14,300Yr paleoecological profile of a lowland tropical lake in Panama. Ecol. Mono. 62: 251–275.Google Scholar
  10. Coley, P. D. & J. Barone, 1996. Herbivory and plant defenses in tropical forests. Ann. Rev. Ecol. Syst. 27: 305–335.CrossRefGoogle Scholar
  11. Dorweiler, J. & J. Doebley, 1997. Developmental analysis of Teosinte Glume Architecture 1: A key locus in the evolution of maize (Poaceae). Amer. J. Bot. 84: 1313–1322.Google Scholar
  12. Fredlund, G. G., 1993. Paleoenvironmental intepretations of stable carbon, hydrogen, and oxygen isotopes from opal phytoliths, Eustis Ash Pit, Nebraska. In Pearsall, D. M. & D. R. Piperno (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecolog. The University Museum of Archaeology and Anthropology, Philadelphia, pp. 37–46.Google Scholar
  13. Hodson, M. J. & D. E. Evans, 1995. Aluminum/silicon interactions in higher plants. J. Exp. Bot. 46: 161–171.Google Scholar
  14. Hodson, M. J., S. E. Williams & A. G. Sangster, 1997. Silica deposition in the needles of the gymnosperms. I. Chemical analysis and light microscopy. In Pinilla, A., J. Juan-Tresserras & M. J. Machado (eds.) The State of the Art of Phytoliths in Soils and Plants, Mongrafias del Centro de Ciencias Medioambientales, Madrid, pp. 123–133.Google Scholar
  15. Jiang, Q. & D. R. Piperno, 1998. Late Quaternary pollen sequence from Poyang Lake, southern China, and its environmental and archaeological implications. Quat. Res. 52: 250–258.Google Scholar
  16. Kealhofer, L. & D. Penny, 1998. A combined phytolith and pollen record for 14,000 years of vegetation change in northeast Thailand. Rev. Palaeobot. Paly. 103: 83–93.Google Scholar
  17. Kealhofer, L. & D. R. Piperno, 1998. Phytoliths in the modern southeast Asia and Thai flora. Smith. Contri. Bot. No. 88.Google Scholar
  18. Kelly, E. F., R. G. Amundson, B. D. Marino & M. J. Deniro, 1991. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quat. Res. 35: 222–233.CrossRefGoogle Scholar
  19. Kondo, R., C. W. Childs & I. A. E. Atkinson, 1994. Opal Phytoliths of New Zealand. Manaaki Whenua Press, Lincoln, 344 pp.Google Scholar
  20. Lentfer, C. J. & W. E. Boyd, 1998. A comparison of three methods for the extraction of phytoliths from sediments. J. Arch. Sci. 25: 1159–1183.CrossRefGoogle Scholar
  21. Miller-Rosen, A., 1993. Phytolith evidence for early cereal cultivation in the Levant. In Pearsall, D. M. & D. R. Piperno (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology. The University Museum of Archaeology and Anthropology, Philadelphia, pp. 160–171.Google Scholar
  22. Mulholland, S., 1989. Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. J. Arch. Sci. 16: 489–511.Google Scholar
  23. Mulholland, S. C. & C. Prior, 1993. AMS radiocarbon dating of phytoliths. In Pearsall, D. M. & D. R. Piperno (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology. The University Museum of Archaeology and Anthropology, Philadelphia, pp. 21–23.Google Scholar
  24. Mworia-Maitima, J., 1997. Prehistoric fires and land-cover change in western Kenya: evidences from pollen, charcoal, grass cuticles, and grass phytoliths. The Holocene 7: 409–417.Google Scholar
  25. Parry, D. W. & F. Smithson, 1966. Opaline silica in the inflorescences of some British grasses and cereals. Ann. Bot. 30: 525–539.Google Scholar
  26. Pearsall, D. M., D. R. Piperno, E. H. Dinan, M. Umlauf, Z. Zhao & R. A. Benfer, Jr., 1995. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: Results of Preliminary Research. Econ. Bot. 49: 183–196.Google Scholar
  27. Piperno, D. R., 1988. Phytolith Analysis: An Archaeological and Geological Perspective. Academic Press, San Diego, 280 pp.Google Scholar
  28. Piperno, D. R., 1989. The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany, and systematics. Rev. Palaeobot. Paly. 61: 147–173.Google Scholar
  29. Piperno, D. R., 1991. The status of phytolith analysis in the American tropics. J. World Pre. 5: 155–191.Google Scholar
  30. Piperno, D. R., 1993. Phytolith and charcoal records from deep lake cores in the American tropics. In Pearsall, D. M. & D. R. Piperno (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology. The University Museum of Archaeology and Anthropology, Philadephia, pp. 58–71.Google Scholar
  31. Piperno, D. R., 1994. Phytolith and charcoal evidence for prehistoric slash and burn agriculture in the Darien rain forest of Panama. The Holocene 4: 321–325.Google Scholar
  32. Piperno, D. R., 1998. Paleoethnobotany in the Neotropics from microfossils: New insights into ancient plant use and agricultural origins in the tropical forest. J. world Pre. 12: 393–449.Google Scholar
  33. Piperno, D. R. & D. M. Pearsall, 1998. The silica bodies of tropical American grasses: Morphology, Taxonomy, and Implications for Grass Systematics and Fossil Phytolith Identification. Smith. Cont. Bot. No. 85.Google Scholar
  34. Piperno, D. R., M. B. Bush & P. A. Colinvuax, 1991. Paleoecological perspectives on human adaptation in Central Panama. II. The Holocene. Geoarch. 6: 227–250.Google Scholar
  35. Runge, F., 1995. Potential of opal phytoliths for use in paleoecological reconstruction in the humid tropics of Africa. Zeitschrift fhr Geomorphologie, N.F., Supplement 99: 53–64.Google Scholar
  36. Runge, F., 1998. The opal phytolith inventory of soils in central Africa-quantities, shapes, classification, and spectra. Rev. Palaeobot. Palyn. 107: 23–53.Google Scholar
  37. Sangster, A. G. & M. J. Hodson, 1997. Botanical studies of silicon localization in cereal roots and shoots, including cryotechniques: a survey of work up to 1990. In Pinilla, A. F., J. Juan-Tresserras & M. J. Machado (eds.) The State of the Art of Phytoliths in Soils and Plants, Monografias del Centro de Ciencias Medioambientales, Madrid, pp. 113–121.Google Scholar
  38. Sangster, A. G., S. E. Williams & M. J. Hodson, 1997. Silica deposition in the needles of the gymnosperms, II. Scanning electron microscopy and x-ray analysis. In Pinilla, A., J. Juan-Tresseras & M. J. Machado (eds.) The State of the Art of Phytoliths in Soils and Plants. Monografias del Centro de Ciencias Medioambientales, Madrid, pp. 123–133.Google Scholar
  39. Tubb, H. J., M. J. Hodson & G. C. Hodson, 1993. The inflorescence papillae of the Triticeae: A new tool for taxonomic and archaeological research. Ann. Bot. 72: 537–545.CrossRefGoogle Scholar
  40. Wallis, L. (n.d.). Phytolith Analysis in the Kimberley Region, Australia. Manuscript in possession of the author.Google Scholar
  41. Wilding, L. P., 1967. Radiocarbon dating of biogenetic opal. Science 156: 66–67.Google Scholar
  42. Wilding, L. P., R. E. Brown & N. Holowaychuk, 1967. Accessibility and properties of occluded carbon in biogenic opal. Soil Sci. 103: 56–61.Google Scholar
  43. Zhao, Z. & D. M. Pearsall, 1998. Experiments for improving phytolith extraction from soils. J. Arch. Sci. 25: 587–598.CrossRefGoogle Scholar
  44. Zhao, Z., D. M. Pearsall, R. A. Benfer, Jr. & D. R. Piperno, 1998. Distinguishing Rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized Method. Econ. Bot. 52: 134–135.Google Scholar
  45. Zhao, Z. & D. R. Piperno, 1999. Late Pleistocene/Holocene environments in the middleYangtze River Valley, China and rice (Oryza sativa L.) domestication: The phytolith evidence. Geoarchaeology 15: 203–222.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Dolores R. Piperno
    • 1
  1. 1.Center for Tropical Paleoecology and ArchaeologySmithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations