Advertisement

Interaction of Papillomaviral Oncoproteins with Cellular Factors

  • Sigrun Smola-Hess
  • Herbert J. Pfister

Summary

Papillomavirus oncoproteins play a major role in the PV life cycle. Their main task is to overcome cell cycle control and to counteract immune surveillance. As they do not display any intrinsic enzymatic activity, they exert their function via protein-protein interactions. Many of these interactions are highly conserved among different HPV types, especially between the “high risk” types, and can be reduced to the conserved overall structure of the oncoproteins. As outlined above these complex interactions may have profound consequences for the host keratinocyte. With respect to the high risk PV, these alterations may even lead beyond the goal of PV amplification, namely the oncogenic transformation of the host cell.

Keywords

Human Papilloma Virus Cellular Factor Viral Life Cycle Human Papilloma Virus Type Pocket Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresson, T., Sparkowski, J., Goldstein, D. J., and Schlegel, R., 1995, Vacuolar H(+)-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. J. Biol. Chem. 270: 6830–6837.PubMedGoogle Scholar
  2. Antinore, M. J., Birrer, M. J., Patel, D., Nader, L., and McCance, D. J., 1996, The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. Embo J. 15: 1950–1960.PubMedGoogle Scholar
  3. Arroyo, M., Bagchi, S., and Raychaudhuri, P., 1993, Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol. Cell. Biol. 13: 6537–6546.PubMedGoogle Scholar
  4. Banks, L., Barnett, S. C., and Crook, T., 1990, HPV-16 E7 functions at the G1 to S phase transition in the cell cycle. Oncogene 5: 833–837.PubMedGoogle Scholar
  5. Barbosa, M. S., Edmonds, C., Fisher, C., Schiller, J. T., Lowy, D. R., and Vousden, K. H., 1990, The region of the HPV E7 oncoprotein homologous to adenovirus E1a and Sv40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. Embo J. 9: 153–160.PubMedGoogle Scholar
  6. Barbosa, M. S., Lowy, D. R., and Schiller, J. T., 1989, Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J. Virol. 63: 1404–1407.PubMedGoogle Scholar
  7. Barnard, P. and McMillan, N. A., 1999, The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology 259: 305–313.PubMedCrossRefGoogle Scholar
  8. Beer-Romero, P., Glass, S., and Rolfe, M., 1997, Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 14: 595–602.PubMedCrossRefGoogle Scholar
  9. Benbow, U. and Brinckerhoff, C. E., 1997, The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol. 15: 519–526.PubMedCrossRefGoogle Scholar
  10. Berezutskaya, E. and Bagchi, S., 1997, The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272: 30135–30140.PubMedCrossRefGoogle Scholar
  11. Biron, C. A., 1998, Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Semin. Immunol. 10: 383–390.PubMedCrossRefGoogle Scholar
  12. Botz, J., Zerfass-Thome, K., Spitkovsky, D., Delius, H., Vogt, B., Eilers, M., Hatzigeorgiou, A., and Jansen-Durr, P., 1996, Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16: 3401–3409.PubMedGoogle Scholar
  13. Boyer, S. N., Wazer, D. E., and Band, V., 1996, E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56: 4620–4624.PubMedGoogle Scholar
  14. Brady, C. S., Duggan-Keen, M. F., Davidson, J. A., Varley, J. M., and Stern, P. L., 1999, Human papillomavirus type 16 E6 variants in cervical carcinoma: relationship to host genetic factors and clinical parameters. J. Gen. Virol. 80: 3233–3240.PubMedGoogle Scholar
  15. Brehm, A., Nielsen, S. J., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., and Kouzarides, T., 1999, The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. Embo J. 18: 2449–2458.PubMedCrossRefGoogle Scholar
  16. Breiding, D. E., Sverdrup, F., Grossel, M. J., Moscufo, N., Boonchai, W., and Androphy, E. J., 1997, Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. Mol. Cell. Biol. 17: 7208–7219.PubMedGoogle Scholar
  17. Bubb, V., McCance, D. J., and Schlegel, R., 1988, DNA sequence of the HPV-16 E5 ORF and the structural conservation of its encoded protein. Virology 163: 243–246.PubMedCrossRefGoogle Scholar
  18. Burkhardt, A., Willingham, M., Gay, C., Jeang, K. T., and Schlegel, R., 1989, The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170: 334–339.PubMedCrossRefGoogle Scholar
  19. Cavanaugh, A. H., Hempel, W. M., Taylor, L. J., Rogalsky, V., Todorov, G., and Rothblum, L. I., 1995, Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374: 177–180.PubMedCrossRefGoogle Scholar
  20. Chellappan, S., Kraus, V. B., Kroger, B., Münger, K., Howley, P. M., Phelps, W. C., and Nevins, J. R., 1992, Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci U S A 89: 4549–4553.PubMedGoogle Scholar
  21. Chen, J. J., Hong, Y., Rustamzadeh, E., Baleja, J. D., and Androphy, E. J., 1998, Identification of an alpha helical motif sufficient for association with papillomavirus E6. J. Biol. Chem. 273: 13537–13544.PubMedGoogle Scholar
  22. Chen, J. J., Reid, C. E., Band, V., and Androphy, E. J., 1995, Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269: 529–531.PubMedGoogle Scholar
  23. Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H., 1993, Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859.PubMedCrossRefGoogle Scholar
  24. Clemens, K. E., Brent, R., Gyuris, J., and Münger, K., 1995, Dimerization of the human papillomavirus E7 oncoprotein in vivo. Virology 214: 289–293.PubMedCrossRefGoogle Scholar
  25. Cohen, B. D., Goldstein, D. J., Rutledge, L., Vass, W. C., Lowy, D. R., Schlegel, R., and Schiller, J. T., 1993, Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain. J. Virol. 67: 5303–5311.PubMedGoogle Scholar
  26. Cole, S. T. and Danos, O., 1987, Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J. Mol. Biol. 193: 599–608.PubMedCrossRefGoogle Scholar
  27. Conrad, M., Bubb, V. J., and Schlegel, R., 1993, The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67: 6170–6178.PubMedGoogle Scholar
  28. Conrad, M., Goldstein, D., Andresson, T., and Schlegel, R., 1994, The E5 protein of HPV-6, but not HPV-16, associates efficiently with cellular growth factor receptors. Virology 200: 796–800.PubMedCrossRefGoogle Scholar
  29. Conrad-Stöppler, M., Straight, S. W., Tsao, G., Schlegel, R., and McCance, D. J., 1996, The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223: 251–254.Google Scholar
  30. Crook, T., Fisher, C., Masterson, P. J., and Vousden, K. H., 1994, Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 9: 1225–1230.PubMedGoogle Scholar
  31. Crook, T., Tidy, J. A., and Vousden, K. H., 1991, Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67: 547–556.PubMedCrossRefGoogle Scholar
  32. Crusius, K., Auvinen, E., and Alonso, A., 1997, Enhancement of EGF-and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15: 1437–1444.PubMedCrossRefGoogle Scholar
  33. Dai, P., Akimaru, H., Tanaka, Y., Hou, D. X., Yasukawa, T., Kanei-Ishii, C., Takahashi, T., and Ishii, S., 1996, CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10: 528–540.PubMedGoogle Scholar
  34. Dalai, S., Gao, Q., Androphy, E. J., and Band, V., 1996, Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J. Virol. 70: 683–688.Google Scholar
  35. Davies, R., Hicks, R., Crook, T., Morris, J., and Vousden, K., 1993, Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J. Virol. 67: 2521–2528.PubMedGoogle Scholar
  36. Defeo-Jones, D., Vuocolo, G. A., Haskell, K. M., Hanobik, M. G., Kiefer, D. M., McAvoy, E. M., Ivey-Hoyle, M., Brandsma, J. L., Oliff, A., and Jones, R. E., 1993, Papillomavirus E7 protein binding to the retinoblastoma protein is not required for viral induction of warts. J. Virol. 67: 716–725.PubMedGoogle Scholar
  37. Degenhardt, Y. Y. and Silverstein, S. J., 2001, Gps2, a protein partner for human papillomavirus E6 proteins [In Process Citation]. J. Virol. 75: 151–160.PubMedGoogle Scholar
  38. Desaintes, C. and Demeret, C., 1996, Control of papillomavirus DNA replication and transcription. Semin. Cancer Biol. 7: 339–347.PubMedCrossRefGoogle Scholar
  39. Desaintes, C., Hallez, S., Van Alphen, P., and Burny, A., 1992, Transcriptional activation of several heterologous promoters by the E6 protein of human papillomavirus type 16. J. Virol. 66: 325–333.PubMedGoogle Scholar
  40. Dyson, N., Guida, P., Münger, K., and Harlow, E., 1992, Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J. Virol. 66: 6893–6902.PubMedGoogle Scholar
  41. Dyson, N., Howley, P. M., Münger, K., and Harlow, E., 1989, The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.PubMedGoogle Scholar
  42. Eckert, R. L., Crish, J. F., and Robinson, N. A., 1997, The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol. Rev. 77: 397–424.PubMedGoogle Scholar
  43. Eckert, R. L. and Welter, J. F., 1996, Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep. 23: 59–70.PubMedCrossRefGoogle Scholar
  44. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B., 1993, WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.PubMedCrossRefGoogle Scholar
  45. Elbel, M., Carl, S., Spaderna, S., and Iftner, T., 1997, A comparative analysis of the interactions of the E6 proteins from cutaneous and genital papillomaviruses with p53 and E6AP in correlation to their transforming potential. Virology 239: 132–149.PubMedCrossRefGoogle Scholar
  46. Enzenauer, C., Mengus, G., Lavigne, A., Davidson, I., Pfister, H., and May, M., 1998, Interaction of human papillomavirus 8 regulatory proteins E2, E6 and E7 with components of the TFIID complex. Intervirology 41: 80–90.PubMedCrossRefGoogle Scholar
  47. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., and Hancock, D. C., 1992, Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.PubMedCrossRefGoogle Scholar
  48. Firzlaff, J. M., Galloway, D. A., Eisenman, R. N., and Luscher, B., 1989, The E7 protein of human papillomavirus type 16 is phosphorylated by casein kinase II. New Biol. 1: 44–53.PubMedGoogle Scholar
  49. Foster, S. A., Demers, G. W., Etscheid, B. G., and Galloway, D. A., 1994, The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68: 5698–5705.PubMedGoogle Scholar
  50. Foster, S. A. and Galloway, D. A., 1996, Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12: 1773–1779.PubMedGoogle Scholar
  51. Fuchs, P. G., Iftner, T., Weninger, J., and Pfister, H., 1986, Epidermodysplasia verruciformis-associated human papillomavirus 8: genomic sequence and comparative analysis. J. Virol. 58: 626–634.PubMedGoogle Scholar
  52. Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B., and Galloway, D. A., 1997, Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11: 2090–2100.PubMedGoogle Scholar
  53. Gao, Q., Kumar, A., Srinivasan, S., Singh, L., Mukai, H., Ono, Y., Wazer, D. E., and Band, V., 2000, PKN binds and phosphorylates human papillomavirus E6 oncoprotein. J. Biol. Chem. 275: 14824–14830.PubMedGoogle Scholar
  54. Gao, Q., Srinivasan, S., Boyer, S. N., Wazer, D. E., and Band, V., 1999, The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol. Cell. Biol. 19: 733–744.PubMedGoogle Scholar
  55. Gardiol, D., Kuhne, C., Glaunsinger, B., Lee, S. S., Javier, R., and Banks, L., 1999, Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496.PubMedCrossRefGoogle Scholar
  56. Glaunsinger, B. A., Lee, S. S., Thomas, M., Banks, L., and Javier, R., 2000, Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins [In Process Citation]. Oncogene 19: 5270–5280.PubMedCrossRefGoogle Scholar
  57. Goldstein, D. J., Li, W., Wang, L. M., Heidaran, M. A., Aaronson, S., Shinn, R., Schlegel, R., and Pierce, J. H., 1994, The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation. J. Virol. 68: 4432–4441.PubMedGoogle Scholar
  58. Goldstein, D. J. and Schlegel, R., 1990, The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. Embo J. 9: 137–145.PubMedGoogle Scholar
  59. Gross-Mesilaty, S., Reinstein, E., Bercovich, B., Tobias, K. E., Schwartz, A. L., Kahana, C., and Ciechanover, A., 1998, Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc. Natl. Acad. Sci U S A 95: 8058–8063.PubMedCrossRefGoogle Scholar
  60. Grossman, S. R., Mora, R., and Laimins, L. A., 1989, Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector. J. Virol. 63: 366–374.PubMedGoogle Scholar
  61. Gu, Z. and Matlashewski, G., 1995, Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69: 8051–8056.PubMedGoogle Scholar
  62. Heck, D. V., Yee, C. L., Howley, P. M., and Münger, K., 1992, Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci U S A 89: 4442–4446.PubMedGoogle Scholar
  63. Helland, A., Langerod, A., Johnsen, H., Olsen, A. O., Skovlund, E., and Borresen-Dale, A. L., 1998, p53 polymorphism and risk of cervical cancer. Nature 396: 530–531; discussion 532.PubMedCrossRefGoogle Scholar
  64. Hildesheim, A., Schiffman, M., Brinton, L. A., Fraumeni, J. F., Jr., Herrero, R., Bratti, M. C., Schwartz, P., Mortel, R., Barnes, W., Greenberg, M., McGowan, L., Scott, D. R., Martin, M., Herrera, J. E., and Carrington, M., 1998, p53 polymorphism and risk of cervical cancer [letter; comment]. Nature 396: 531–532.PubMedCrossRefGoogle Scholar
  65. Hoppe-Seyler, F. and Butz, K., 1993, Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J. Virol. 67: 3111–3117.PubMedGoogle Scholar
  66. Horvai, A. E., Xu, L., Korzus, E., Brard, G., Kalafus, D., Mullen, T. M., Rose, D. W., Rosenfeld, M. G., and Glass, C. K., 1997, Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci USA 94: 1074–1079.PubMedCrossRefGoogle Scholar
  67. Howes, K. A., Ransom, N., Papermaster, D. S., Lasudry, J. G., Albert, D. M., and Windle, J. J., 1994, Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53 [published erratum appears in Genes Dev 1994 Jul 15;8(14): 1738]. Genes Dev. 8: 1300–1310.PubMedGoogle Scholar
  68. Hubbert, N. L., Sedman, S. A., and Schiller, J. T., 1992, Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J. Virol. 66: 6237–6241.PubMedGoogle Scholar
  69. Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1991, A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J. 10: 4129–4135.PubMedGoogle Scholar
  70. Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1993a, Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13: 775–784.PubMedGoogle Scholar
  71. Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1993b, Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell. Biol. 13: 4918–4927.PubMedGoogle Scholar
  72. Imai, T., Matsuda, K., Shimojima, T., Hashimoto, T., Masuhiro, Y., Kitamoto, T., Sugita, A., Suzuki, K., Matsumoto, H., Masushige, S., Nogi, Y., Muramatsu, M., Handa, H., and Kato, S., 1997, ERC-55, a binding protein for the papilloma virus E6 oncoprotein, specifically interacts with vitamin D receptor among nuclear receptors. Biochem. Biophys. Res. Commun. 233: 765–769.PubMedCrossRefGoogle Scholar
  73. Jewers, R. J., Hildebrandt, P., Ludlow, J. W., Kell, B., and McCance, D. J., 1992, Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J. Virol. 66: 1329–1335.PubMedGoogle Scholar
  74. Jones, D. L., Alani, R. M., and Münger, K., 1997, The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21 Cip1-mediated inhibition of cdk2. Genes Dev. 11: 2101–2111.PubMedGoogle Scholar
  75. Josefsson, A. M., Magnusson, P. K., Ylitalo, N., Quarforth-Tubbin, P., Ponten, J., Adami, H. O., and Gyllensten, U. B., 1998, p53 polymorphism and risk of cervical cancer. Nature 396: 531; discussion 532.PubMedCrossRefGoogle Scholar
  76. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G., 1996, A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.PubMedCrossRefGoogle Scholar
  77. Kanda, T., Watanabe, S., Zanma, S., Sato, H., Furuno, A., and Yoshiike, K., 1991, Human papillomavirus type 16 E6 proteins with glycine substitution for cysteine in the metalbinding motif. Virology 185: 536–543.PubMedCrossRefGoogle Scholar
  78. Kao, W. H., Beaudenon, S. L., Talis, A. L., Huibregtse, J. M., and Howley, P. M., 2000, Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J. Virol. 74: 6408–6417.PubMedGoogle Scholar
  79. Kell, B., Jewers, R. J., Cason, J., Pakarian, F., Kaye, J. N., and Best, J. M., 1994, Detection of E5 oncoprotein in human papillomavirus type 16-positive cervical scrapes using antibodies raised to synthetic peptides. J. Gen. Virol. 75: 2451–2456.PubMedGoogle Scholar
  80. Kessis, T. D., Connolly, D. C., Hedrick, L., and Cho, K. R., 1996, Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13: 427–431.PubMedGoogle Scholar
  81. Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T., and Ishibashi, M., 1997, Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci U S A 94: 11612–11616.PubMedCrossRefGoogle Scholar
  82. Kiyono, T., Hiraiwa, A., Ishii, S., Takahashi, T., and Ishibashi, M., 1994, Inhibition of p53-mediated transactivation by E6 of type 1, but not type 5, 8, or 47, human papillomavirus of cutaneous origin. J. Virol. 68: 4656–4661.PubMedGoogle Scholar
  83. Klaes, R., Woerner, S. M., Ridder, R., Wentzensen, N., Duerst, M., Schneider, A., Lotz, B., Melsheimer, P., and von Knebel Doeberitz, M., 1999, Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res. 59: 6132–6136.PubMedGoogle Scholar
  84. Klingelhutz, A. J., Foster, S. A., and McDougall, J. K., 1996, Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380: 79–82.PubMedCrossRefGoogle Scholar
  85. Krajewski, S., Krajewska, M., and Reed, J. C., 1996, Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 56: 2849–2855.PubMedGoogle Scholar
  86. Kuhne, C. and Banks, L., 1998, E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J. Biol. Chem. 273: 34302–34309.PubMedCrossRefGoogle Scholar
  87. Kukimoto, I., Aihara, S., Yoshiike, K., and Kanda, T., 1998, Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem. Biophys. Res. Commun. 249: 258–262.PubMedCrossRefGoogle Scholar
  88. Lane, D. P. and Crawford, L. V., 1979, T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.PubMedCrossRefGoogle Scholar
  89. Lechner, M. S. and Laimins, L. A., 1994, Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J. Virol. 68: 4262–4273.PubMedGoogle Scholar
  90. Lee, D., Lee, B., Kim, J., Kim, D. W., and Choe, J., 2000, cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J. Biol. Chem. 275: 7045–7051.PubMedGoogle Scholar
  91. Lee, J. O., Russo, A. A., and Pavletich, N. P., 1998, Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391: 859–65.PubMedGoogle Scholar
  92. Lee, J. S., Galvin, K. M., See, R. H., Eckner, R., Livingston, D., Moran, E., and Shi, Y., 1995, Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300 [published erratum appears in Genes Dev 1995 Aug 1;9(15): 1948’9]. Genes Dev. 9: 1188–1198.PubMedGoogle Scholar
  93. Lee, S. S., Weiss, R. S., and Javier, R. T., 1997, Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci U S A 94: 6670–6675.PubMedGoogle Scholar
  94. Leechanachai, P., Banks, L., Moreau, F., and Matlashewski, G., 1992, The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7: 19–25.PubMedGoogle Scholar
  95. Li, S., Labrecque, S., Gauzzi, M. C., Cuddihy, A. R., Wong, A. H., Pellegrini, S., Matlashewski, G. J., and Koromilas, A. E., 1999, The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18: 5727–5737.PubMedGoogle Scholar
  96. Li, X. and Coffino, P., 1996, High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol. 70: 4509–4516.PubMedGoogle Scholar
  97. Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J., and Livingston, D. M., 1997, Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.PubMedGoogle Scholar
  98. Linzer, D. I. and Levine, A. J., 1979, Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52.PubMedCrossRefGoogle Scholar
  99. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D., and Harel-Bellan, A., 1998, Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.PubMedGoogle Scholar
  100. Mansur, C. P., Marcus, B., Dalal, S., and Androphy, E. J., 1995, The domain of p53 required for binding HPV 16 E6 is separable from the degradation domain. Oncogene 10: 457–465.PubMedGoogle Scholar
  101. Martin, P., Vass, W. C., Schiller, J. T., Lowy, D. R., and Velu, T. J., 1989, The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell 59: 21–32.PubMedCrossRefGoogle Scholar
  102. Massimi, P., Pim, D., and Banks, L., 1997, Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. J. Gen. Virol. 78: 2607–2613.PubMedGoogle Scholar
  103. Massimi, P., Pim, D., Bertoli, C., Bouvard, V., and Banks, L., 1999, Interaction between the HPV-16 E2 transcriptional activator and p53. Oncogene 18: 7748–7754.PubMedGoogle Scholar
  104. Massimi, P., Pim, D., Storey, A., and Banks, L., 1996, HPV-16 E7 and adenovirus E1 a complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 12: 2325–2330.PubMedGoogle Scholar
  105. Mavromatis, K. O., Jones, D. L., Mukherjee, R., Yee, C., Grace, M., and Münger, K., 1997, The carboxyl-terminal zinc-binding domain of the human papillomavirus E7 protein can be functionally replaced by the homologous sequences of the E6 protein. Virus Res. 52: 109–118.PubMedCrossRefGoogle Scholar
  106. Mazzarelli, J. M., Atkins, G. B., Geisberg, J. V., and Ricciardi, R. P., 1995, The viral oncoproteins Ad5 E1A, HPV 16 E7 and SV40 TAg bind a common region of the TBP-associated factor-110. Oncogene 11: 1859–1864.PubMedGoogle Scholar
  107. McIntyre, M. C., Frattini, M. G., Grossman, S. R., and Laimins, L. A., 1993, Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J. Virol. 67: 3142–3150.PubMedGoogle Scholar
  108. Minaguchi, T., Kanamori, Y., Matsushima, M., Yoshikawa, H., Taketani, Y., and Nakamura, Y., 1998, No evidence of correlation between polymorphism at codon 72 of p53 and risk of cervical cancer in Japanese patients with human papillomavirus 16/18 infection. Cancer Res. 58: 4585–4586.PubMedGoogle Scholar
  109. Missero, C., Calautti, E., Eckner, R., Chin, J., Tsai, L. H., Livingston, D. M., and Dotto, G. P., 1995, Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc. Natl. Acad. Sci U S A 92: 5451–5455.PubMedGoogle Scholar
  110. Münger, K., Werness, B. A., Dyson, N., Phelps, W. C., Harlow, E., and Howley, P. M., 1989, Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J. 8: 4099–4105.PubMedGoogle Scholar
  111. Nakagawa, S. and Huibregtse, J. M., 2000, Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase [In Process Citation]. Mol. Cell. Biol. 20: 8244–8253.PubMedCrossRefGoogle Scholar
  112. Nakagawa, S., Watanabe, S., Yoshikawa, H., Taketani, Y., Yoshiike, K., and Kanda, T., 1995, Mutational analysis of human papillomavirus type 16 E6 protein: transforming function for human cells and degradation of p53 in vitro. Virology 212: 535–542.PubMedCrossRefGoogle Scholar
  113. Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D., and Montminy, M., 1997, RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90: 1107–1112.PubMedCrossRefGoogle Scholar
  114. Nead, M. A., Baglia, L. A., Antinore, M. J., Ludlow, J. W., and McCance, D. J., 1998, Rb binds c-Jun and activates transcription. Embo J. 17: 2342–2352.PubMedCrossRefGoogle Scholar
  115. Nishitani, J., Nishinaka, T., Cheng, C. H., Rong, W., Yokoyama, K. K., and Chiu, R., 1999, Recruitment of the retinoblastoma protein to c-Jun enhances transcription activity mediated through the AP-1 binding site. J. Biol. Chem. 274: 5454–5461.PubMedCrossRefGoogle Scholar
  116. Oelgeschlager, M., Janknecht, R., Krieg, J., Schreek, S., and Luscher, B., 1996, Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. Embo J. 15: 2771–2780.PubMedGoogle Scholar
  117. Ohtani, K., DeGregori, J., and Nevins, J. R., 1995, Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl. Acad. Sci USA 92: 12146–12150.PubMedGoogle Scholar
  118. Pan, H. and Griep, A. E., 1994, Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 8: 1285–1299.PubMedGoogle Scholar
  119. Park, J. S., Kim, E. J., Kwon, H. J., Hwang, E. S., Namkoong, S. E., and Um, S. J., 2000, Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275: 6764–6769.PubMedGoogle Scholar
  120. Patel, D., Huang, S. M., Baglia, L. A., and McCance, D. J., 1999, The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. Embo J. 18: 5061–5072.PubMedCrossRefGoogle Scholar
  121. Patrick, D. R., Oliff, A., and Heimbrook, D. C., 1994, Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein. J. Biol. Chem. 269: 6842–6850.PubMedGoogle Scholar
  122. Peng, Y. C., Breiding, D. E., Sverdrup, F., Richard, J., and Androphy, E. J., 2000, AMF-l/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. J. Virol. 74: 5872–5879.PubMedGoogle Scholar
  123. Perea, S. E., Massimi, P., and Banks, L., 2000, Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int. J. Mol. Med. 5: 661–666.PubMedGoogle Scholar
  124. Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J., 1997, Regulation of NF-kappaB by cyclin-dependent kinasesassociated with the p300 coactivator. Science 275: 523–527.PubMedCrossRefGoogle Scholar
  125. Petti, L. and DiMaio, D., 1992, Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc. Natl. Acad. Sci U S A 89: 6736–6740.PubMedGoogle Scholar
  126. Phelps, W. C., Münger, K., Yee, C. L., Barnes, J. A., and Howley, P. M., 1992, Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J. Virol. 66: 2418–2427.PubMedGoogle Scholar
  127. Phelps, W. C., Yee, C. L., Münger, K., and Howley, P. M., 1988, The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1 A. Cell 53: 539–547.PubMedCrossRefGoogle Scholar
  128. Phillips, A. C. and Vousden, K. H., 1997, Analysis of the interaction between human papillomavirus type 16 E7 and the TATA-binding protein, TBP. J. Gen. Virol. 78: 905–909.PubMedGoogle Scholar
  129. Pim, D., Collins, M., and Banks, L., 1992, Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7: 27–32.PubMedGoogle Scholar
  130. Pim, D., Massimi, P., and Banks, L., 1997, Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene 15: 257–264.PubMedCrossRefGoogle Scholar
  131. Pim, D., Storey, A., Thomas, M., Massimi, P., and Banks, L., 1994, Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9: 1869–1876.PubMedGoogle Scholar
  132. Pim, D., Thomas, M., Javier, R., Gardiol, D., and Banks, L., 2000, HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19: 719–725.PubMedCrossRefGoogle Scholar
  133. Rey, O., Lee, S., Baluda, M. A., Swee, J., Ackerson, B., Chiu, R., and Park, N. H., 2000, The E7 oncoprotein of human papillomavirus type 16 interacts with F-actin in vitro and in vivo. Virology 268: 372–381.PubMedCrossRefGoogle Scholar
  134. Rodriguez, M. I., Finbow, M. E., and Alonso, A., 2000, Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 19: 3727–3732.PubMedGoogle Scholar
  135. Ronco, L. V., Karpova, A. Y., Vidal, M., and Howley, P. M., 1998, Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12: 2061–2072.PubMedGoogle Scholar
  136. Sang, N., Avantaggiati, M. L., and Giordano, A., 1997, Roles of p300, pocket proteins, and hTBP in E1A-mediated transcriptional regulation and inhibition of p53 transactivation activity. J. Cell Biochem. 66: 277–285.PubMedCrossRefGoogle Scholar
  137. Sarnow, P., Ho, Y. S., Williams, J., and Levine, A. J., 1982, Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387–394.PubMedCrossRefGoogle Scholar
  138. Sato, H., Watanabe, S., Furuno, A., and Yoshiike, K., 1989, Human papillomavirus type 16 E7 protein expressed in Escherichia coli and monkey COS-1 cells: immunofluorescence detection of the nuclear E7 protein. Virology 170: 311–315.PubMedCrossRefGoogle Scholar
  139. Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.PubMedCrossRefGoogle Scholar
  140. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M., 1990, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.PubMedCrossRefGoogle Scholar
  141. Schilling, B., De-Medina, T., Syken, J., Vidal, M., and Münger, K., 1998, A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology 247: 74–85.PubMedCrossRefGoogle Scholar
  142. Schulze, A., Zerfass, K., Spitkovsky, D., Middendorp, S., Berges, J., Helin, K., Jansen-Durr, P., and Henglein, B., 1995, Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc. Natl. Acad. Sci U S A 92: 11264–11268.PubMedGoogle Scholar
  143. Sherman, L., Jackman, A., Itzhaki, H., Conrad-Stöppler, M., Koval, D., and Schlegel, R., 1997, Inhibition of serum-and calcium-induced differentiation of human keratinocytes by HPV16 E6 oncoprotein: role of p53 inactivation. Virology 237: 296–306.PubMedCrossRefGoogle Scholar
  144. Slebos, R. J., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O., Jacks, T., Hedrick, L., Kastan, M. B., and Cho, K. R., 1994, p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci U S A 91: 5320–5324.PubMedGoogle Scholar
  145. Smotkin, D. and Wettstein, F. O., 1987, The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein. J. Virol. 61: 1686–1689.PubMedGoogle Scholar
  146. Somasundaram, K., 2000, Tumor suppressor p53: regulation and function. Front. Biosci. 5: D424–D437.PubMedGoogle Scholar
  147. Somasundaram, K. and El-Deiry, W. S., 1997, Inhibition of p53-mediated transactivation and cell cycle arrest by E1 A through its p300/CBP-interacting region. Oncogene 14: 1047–1057.PubMedCrossRefGoogle Scholar
  148. Steger, G. and Pfister, H., 1992, In vitro expressed HPV 8 E6 protein does not bind p53. Arch. Virol. 125: 355–360.PubMedCrossRefGoogle Scholar
  149. Stirdivant, S. M., Ahern, J. D., Oliff, A., and Heimbrook, D. C., 1992, Retinoblastoma protein binding properties are dependent on 4 cysteine residues in the protein binding pocket. J. Biol. Chem. 267: 14846–14851.PubMedGoogle Scholar
  150. Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., Breuer, J., Leigh, I. M., Matlashewski, G., and Banks, L., 1998, Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393: 229–234.PubMedGoogle Scholar
  151. Straight, S. W., Herman, B., and McCance, D. J., 1995, The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69: 3185–3192.PubMedGoogle Scholar
  152. Straight, S. W., Hinkle, P. M., Jewers, R. J., and McCance, D. J., 1993, The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 67: 4521–4532.PubMedGoogle Scholar
  153. Sutcliffe, J. E., Brown, T. R., Allison, S. J., Scott, P. H., and White, R. J., 2000, Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription [In Process Citation]. Mol. Cell. Biol. 20: 9192–9202.PubMedCrossRefGoogle Scholar
  154. Sutcliffe, J. E., Cairns, C. A., McLees, A., Allison, S. J., Tosh, K., and White, R. J., 1999, RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol. Cell. Biol. 19: 4255–4261.PubMedGoogle Scholar
  155. Swan, D. C., Vernon, S. D., and Icenogle, J. P., 1994, Cellular proteins involved in papillomavirus-induced transformation. Arch. Virol. 138: 105–115.PubMedCrossRefGoogle Scholar
  156. Thomas, M. and Banks, L., 1999, Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J. Gen. Virol. 80: 1513–1517.PubMedGoogle Scholar
  157. Thomas, M. and Banks, L., 1998, Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17: 2943–2954.PubMedCrossRefGoogle Scholar
  158. Tommasino, M., Adamczewski, J. P., Carlotti, F., Barth, C. F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T., and Crawford, L., 1993, HPV 16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8: 195–202.PubMedGoogle Scholar
  159. Tong, X., Boll, W., Kirchhausen, T., and Howley, P. M., 1998, Interaction of the bovine papillomavirus E6 protein with the clathrin adaptor complex AP-1. J. Virol. 72: 476–482.PubMedGoogle Scholar
  160. Tong, X. and Howley, P. M., 1997, The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl. Acad. Sci U S A 94: 4412–4417.PubMedCrossRefGoogle Scholar
  161. Tong, X., Salgia, R., Li, J. L., Griffin, J. D., and Howley, P. M., 1997, The bovine papillomavirus E6 protein binds to the LD motif repeats of paxillin and blocks its interaction with vinculin and the focal adhesion kinase. J. Biol. Chem. 272: 33373–33376.PubMedGoogle Scholar
  162. Ullman, C. G., Haris, P. I., Kell, B., Cason, J., Jewers, R. J., Best, J. M., Emery, V. C., and Perkins, S. J., 1994, Hypothetical structure of the membrane-associated E5 oncoprotein of human papillomavirus type 16. Biochem. Soc. Trans. 22: 439S.Google Scholar
  163. van Duin, M., Snijders, P. J., Vossen, M. T., Klaassen, E., Voorhorst, F., Verheijen, R. H., Helmerhorst, T. J., Meijer, C. J., and Walboomers, J. M., 2000, Analysis of human papilloma virus type 16 E6 variants in relation to p53 codon 72 polymorphism genotypes in cervical carcinogenesis. J. Gen. Virol. 81 Pt 2: 317–325.Google Scholar
  164. Vande Pol, S. B., Brown, M. C., and Turner, C. E., 1998, Association of Bovine Papillomavirus Type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16: 43–52.PubMedGoogle Scholar
  165. Venuti, A., Salani, D., Poggiali, F., Manni, V., and Bagnato, A., 1998, The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth. Virology 248: 1–5.PubMedCrossRefGoogle Scholar
  166. Vousden, K. H., Vojtesek, B., Fisher, C., and Lane, D., 1993, HPV-16 E7 or adenovirus E1 A can overcome the growth arrest of cells immortalized with a temperature-sensitive p53. Oncogene 8: 1697–1702.PubMedGoogle Scholar
  167. Waddell, S. and Jenkins, J. R., 1998, Defining the minimal requirements for papilloma viral E6-mediated inhibition of human p53 activity in fission yeast. Oncogene 16: 1759–1765.PubMedCrossRefGoogle Scholar
  168. Watanabe, S., Kanda, T., Sato, H., Furuno, A., and Yoshiike, K., 1990, Mutational analysis of human papillomavirus type 16 E7 functions. J. Virol. 64: 207–214.PubMedGoogle Scholar
  169. Watanabe, S., Sato, H., Furuno, A., and Yoshiike, K., 1992, Changing the spacing between metal-binding motifs decreases stability and transforming activity of the human papillomavirus type 18 E7 oncoprotein. Virology 190: 872–875.PubMedCrossRefGoogle Scholar
  170. Waters, C. M., Overholser, K. A., Sorkin, A., and Carpenter, G., 1992, Analysis of the influences of the E5 transforming protein on kinetic parameters of epidermal growth factor binding and metabolism. J. Cell. Physiol. 152: 253–263.PubMedCrossRefGoogle Scholar
  171. Werness, B. A., Levine, A. J., and Howley, P. M., 1990, Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79.PubMedGoogle Scholar
  172. Wu, E. W., Clemens, K. E., Heck, D. V., and Münger, K., 1993, The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J. Virol. 67: 2402–2407.PubMedGoogle Scholar
  173. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D., 1993, p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.PubMedCrossRefGoogle Scholar
  174. Zerfass, K., Levy, L. M., Cremonesi, C., Ciccolini, F., Jansen-Durr, P., Crawford, L., Ralston, R., and Tommasino, M., 1995, Cell cycle-dependent disruption of E2F-pl07 complexes by human papillomavirus type 16 E7. J. Gen. Virol. 76: 1815–1820.PubMedCrossRefGoogle Scholar
  175. Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J. W., and Jansen-Durr, P., 1996, Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13: 2323–2330.PubMedGoogle Scholar
  176. Zimmermann, H., Degenkolbe, R., Bernard, H. U., and O’Connor, M. J., 1999, The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73: 6209–6219.PubMedGoogle Scholar
  177. zur Hausen, H., 2000, Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 92: 690–698.PubMedCrossRefGoogle Scholar
  178. Zwerschke, W., Joswig, S., and Jansen-Durr, P., 1996, Identification of domains required for transcriptional activation and protein dimerization in the human papillomavirus type-16 E7 protein. Oncogene 12: 213–220.PubMedGoogle Scholar
  179. Zwerschke, W., Mazurek, S., Massimi, P., Banks, L., Eigenbrodt, E., and Jansen-Durr, P., 1999, Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc. Natl. Acad. Sci U S A 96: 1291–1296.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Sigrun Smola-Hess
    • 1
  • Herbert J. Pfister
    • 1
  1. 1.Department of VirologyUniversity of CologneCologneGermany

Personalised recommendations