Opiates Promote T Cell Apoptosis Through JNK and Caspase Pathway

  • Pravin Singhal
  • Aditi Kapasi
  • Krishna Reddy
  • Nicholas Franki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 493)


Opiate addicts are prone to recurrent infections. In the present study we evaluated the molecular mechanism of opiate-induced T cell apoptosis. Both morphine and DAGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin) enhanced T cell apoptosis. Morphine as well as DAGO activated c-Jun NH 2 -terminal kinase (JNK) in T cells. Moreover, opiates increased the expression of ATF-2, a specific substrate for JNK and P38 mitogen activated kinases (MAPK). Furthermore, opiates attenuated extracellular signal related kinase (ERK) in T cells. Both morphine and DAGO cleaved pro-caspases 8, 9, and 10 and generated caspases 8, 9 and 10 (active products). Morphine as well as DAGO also cleaved poly- (ADP-ribose) polymerase (PARP) into 116 and 85 kD proteins indicating the activation of caspase-3. These results suggest that opiate-induced T cell apoptosis may be mediated through the JNK cascade and activation of caspases 8 and 3.


Cell Apoptosis Jurkat Cell Lymphocyte Apoptosis Extracellular Signal Related Kinase Opiate Addict 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.F. Luttgens, Endocarditis in “main line “ opium addicts, Arch. Intern. Med 83:653 (1949).Google Scholar
  2. 2.
    J.H. Briggs, C.G. McKerron, R.L. Souhami, D.J.E. Taylor, and H. Andrews, Severe systemic infections complicating “main line” heroin addiction, Lancet 2:1227 (1967).PubMedGoogle Scholar
  3. 3.
    J.J. Madden, R.M. Donahoe, J. Zwemer-Collins, D.A. Shafer, and A. Falek, Binding of naloxone to human T lymphocytes, Biochem. Pharmacol. 36:4103 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    R.T. Radulescu, B.R. DeCosta, A.E. Jacobson, K.E. Rice, J.E. Blalock, and D.J.J. Carr, Biochemical and functional characterization of a μ opioid receptor binding site on cells of the immune system, Progr. Neuroendocrine Immunol. 4:166 (1991).Google Scholar
  5. 5.
    A. Rao, Signalling mechanisms in T cells, Crit. Rev. Immunol. 10:495 (1991).PubMedGoogle Scholar
  6. 6.
    A. Weiss and D.R. Littman, Signal transduction by lymphocyte antigen receptors, Cell 76:263 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    R.H. Schwartz, Costimulation of T lymphocytes: the role of CD28, CTLA4, and B7/BB1 in interleukin production and immunotherapy, Cell 71:1349 (1990).Google Scholar
  8. 8.
    J.D. Fraser, B.A. Irving, G.R. Crabtree, and A. Weiss. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251:313 (1991).PubMedGoogle Scholar
  9. 9.
    M.P.N. Nair, S.A. Schwartz, R. Polasani, J. Hou, A. Swet, and K.C. Chadha, Immunoregulatory effects of morphine on human lymphocytes. Clin. Diagnost. Lab. Immunol. 4:127(1997).Google Scholar
  10. 10.
    P.C. Singhal, A.A. Kapasi, K. Reddy, N. Franki, N. Gibbons, and G. Ding, Morphine promotes apoptosis in Jurkat cells, J. Leukocyte Biol. 66:650 (1999).PubMedGoogle Scholar
  11. 11.
    S.A. Fauci, The human immunodeficiency virus: infectivity and mechanism of pathogenesis, Science 239: 617 (1988).PubMedGoogle Scholar
  12. 12.
    A.E. Greenberg, P.A. Thomas, S.H. Landesman, D. Mildvan, M. Seidlin, G.H. Friedland, R. Holzman, J.B. Starrett, E.L. Bryan, and R.F. Evans, The spectrum of HIV-1-related disease among outpatients in New York City, A.I.D.S. 6:849 (1992).Google Scholar
  13. 13.
    T.S. Dobmeyer, S. Findhammer, J.M. Dobmeyer, B. Raffel, D. Hoelzer, E.B. Helm, D. Kabelitz, and R. Rossol, Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: Role for lymphocyte loss in HIV infection. Free Rad. Biol. Med. 22:775 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    G.R. Crabtree, Contingent genetic regulatory events in T lymphocyte activation, Science 243:355 (1989).PubMedGoogle Scholar
  15. 15.
    M. Karin, The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. chem. 270:16483 (1995).PubMedGoogle Scholar
  16. 16.
    J.M. Kyriakis, and J. Avruch, Sounding the alarm: protein kinase cascades activated by stress and inflammation, J. Biol. Chem. 271:24313 (1996).PubMedGoogle Scholar
  17. 17.
    M. Enari, R.V. Talanian, W.W. Wong, and S. Nagata, Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis, Nature 380:723 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    S.M. Srinivasula, M. Ahmad, AT. Fernandes, G. Litwack, and E.S. Alnemri, Molecular ordering of the Fas-apoptotic pathway: The Fas/APO-1 protease Mch5 is CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cystein proteases, Proc. Natl. Acad. Set. USA 93:14486 (1996).Google Scholar
  19. 19.
    D. Yin, A. Mufson, R. Wang, and Y. Shi. Fas-mediated cell death promoted by opioids. Nature 397:218 (1999).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Ashkenazi and V.M. Dixit. Death receptors: signaling and modulation. Science 281:1305 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Schulze-Osthoff, D. Ferrari, M. Loss, S. Wesselborg, and M.E. Peter, Apoptosis signaling by death receptors, Eur. J. Biochem. 254:439(1998).PubMedCrossRefGoogle Scholar
  22. 22.
    P.C. Singhal, P. Sharma, A. Kapasi, K. Reddy, N. Franki, and N. Gibbons, Morphine enhances macrophage apoptosis. J. Immunol. 160:1886(1998).PubMedGoogle Scholar
  23. 23.
    P. Chomczynski and Sacchi N, Single-step method of RNA isolation by acid guanidine thiocyanate phenol-chloroform extraction, Anal. Biochem. 162:156(1987).PubMedCrossRefGoogle Scholar
  24. 24.
    R.E. Anderson and N.L. Warner, Ionizing radiation and the immune response, Adv. Immunol. 24:215(1976).PubMedGoogle Scholar
  25. 25.
    J.J. Cohen, Apoptosis: Mechanisms of life and death in the immune system, J. Allergy Clin. Immunol. 103:548 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Dhein, H. Walczak, C. Baumler, K.M. Debatin, and P.H. Krammer, Autocrine T-cell suicide mediated by APO-l/(Fas/CD95), Nature 373:438(1995).PubMedCrossRefGoogle Scholar
  27. 27.
    M.R. Alderson, T.W. Tough, T. Davis-Smith, Fas ligand mediates activation-induced cell death in human T lymphocytes, J. Exp. Med 181:71(1995).PubMedCrossRefGoogle Scholar
  28. 28.
    D.A. Martin, R.M. Siegel, L. Zheng, and M.I. Lenardo, Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalphal) death signal, J. Biol. Chem. 273:4345(1998).PubMedGoogle Scholar
  29. 29.
    M. Muzio, B.R. Stockwell, H.R. Stennicke, G.S. Salvesen, and V. M. Dixit, An induced proximity model for caspase-8 activation, J. Biol. Chem. 273:2926(1998).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Li, H. Zhu, C.J. Xu, and J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell 94:491(1998).PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Collette, A. Benziane, D. Raznajaona, and D. Olive, Distinct regulation of T-cell death by CD28 depending on both its aggregation and T-cell receptor triggering: a role for Fas-FasL, Blood 92:1350(1998).PubMedGoogle Scholar
  32. 32.
    A.T. Vella, S. Dow, T.A. Potter, J. Kappler, and P. Marrack, Cytokine-induced survival of activated T cells in vitro and in vivo, Proc. Nail. Acad. Sci. USA. 95:3810(3815) 1998.Google Scholar
  33. 33.
    Y.C. Wang, W.L. Whaley, R.M. Donahoe, P. Turner, and J.J. Madden JJ, The interaction of (-)-morphine and peripheral T lymphocytes: if not mu receptors, what? Seventh Annual Conference: Neuroimmune Circuits and Infectious Disease. October 7, 1999, NIDA, Bethesda, MDGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Pravin Singhal
    • 1
  • Aditi Kapasi
    • 1
  • Krishna Reddy
    • 1
  • Nicholas Franki
    • 1
  1. 1.Molecular Biology and Experimental Pathology Division of Kidney Diseases and HypertensionLong Island Jewish Medical CenterNew Hyde Park

Personalised recommendations