Advertisement

Comparative Genome Analysis of the Mollicutes

  • Thomas Dandekar
  • Berend Snel
  • Steffen Schmidt
  • Warren Lathe
  • Mikita Suyama
  • Martijn Huynen
  • Peer Bork
Chapter

Abstract

The Mollicutes are Eubacteria that have probably been derived from Lactobacilli, Bacilli, and Streptococci by regressive evolution and genome reduction to produce the smallest and simplest free-living and self-replicating cells. The life style is in general Chapausitic. Structurally, the Mollicutes are characterized by the complete lack of a cell wall, and the presence of an internal cytoskeleton27,46.

Keywords

Amplify Fragment Length Polymorphism Comparative Genome Analysis Mycoplasma Pneumoniae Mycoplasma Genitalium Genome Phylogeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Aravind, L. and E. V. Koonin. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23:469–472.PubMedCrossRefGoogle Scholar
  3. 3.
    Bjork, G. R., K. Jacobsson, K. Nilsson, M. J. Johansson, A. S. Bystrom, and O. P. Persson. 2001. A primordial tRNA modification required for the evolution of life? EMBO J. 20:231–239.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Blattner, F. R., C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474.PubMedCrossRefGoogle Scholar
  5. 5.
    Bolotin, A., S. Mauger, K. Malarme, S. D. Ehrlich, and A. Sorokin. 1999. Low-redundancy sequencing of the entire Lactococcus lactis IL 1403 genome. Antonie Van Leeuwenhoek 76:27–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Bork, P., C. Ouzounis, G. Casari, R. Schneider, C. Sander, M. Dolan, W. Gilbert, and P. M. Gillevet. 1995. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol. Microbiol. 16:955–967.PubMedCrossRefGoogle Scholar
  7. 7.
    Chambaud, I., R. Heilig, S. Ferris, V. Barbe, D. Samson, F. Galisson, I. Moszer, K. Dybvig, H. Wroblewski, A. Viari, E. P. Rocha, and A. Blanchard. 2001. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res. 29:2145–2153.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Dandekar, T., M. Huynen, J. T. Regula, B. Ueberle, C. U. Zimmermann, M. A. Andrade, T. Doerks, L. Sanchez-Pulido, B. Snel, M. Suyama, Y. P. Yuan, R. Herrmann, and P. Bork. 2000. Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res. 28:3278–3288.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dhandayuthapani, S., W. G. Rasmussen, and J. B. Baseman. 1999. Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc. Natl. Acad. Sci. USA 96:5227–5232.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ferretti, J. J., W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe, and R. McLaughlin. 2001. Complete genome sequence of an Ml strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98:4658–4663.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fischer, D. and D. Eisenberg. 1997. Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc. Natl. Acad. Sci. USA 94:11929–11934.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, and J. M. Kand. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397–403.PubMedCrossRefGoogle Scholar
  13. 13.
    Garcia-Vallve, S., A. Romeu, and J. Palau. 2000. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10:1719–1725.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gelfand, M. S. and E. V. Koonin. 1997. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res. 25:2430–2439.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Glass, J. I., E. J. Lefkowitz, J. S. Glass, C. R. Heiner, E. Y. Chen, and G. H. Cassell. 2000. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:757–762.PubMedCrossRefGoogle Scholar
  16. 16.
    Gumulak-Smith, J., A. Teachman, A. H. Tu, J. W. Simecka, J. R. Lindsey, and K. Dybvig. 2001. Variations in the surface proteins and restriction enzyme systems of Mycoplasma pulmonis in the respiratory tract of infected rats. Mol. Microbiol. 40:1037–1044.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamet, M., C. Bonissol, and P. Cartier. 1979. Activities of enzymes of purine and pyrimidine metabolism in nine Mycoplasma species. Adv. Exp. Med. Biol. 122B:231–235.Google Scholar
  18. 18.
    Herrmann, R. and B. Reiner. 1998. Mycoplasma pneumoniae and Mycoplasma genitalium: a comparison of two closely related bacterial species. Curr. Opin. Microbiol. 1:572–579.PubMedCrossRefGoogle Scholar
  19. 19.
    Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B. C. Li, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:4420–4449.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Himmelreich, R., H. Plagens, H. Hilbert, B. Reiner, and R. Herrmann. 1997. ComChapautive analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res. 25:701–712.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hutchison III, C. A., S. N. Peterson, S. R. Gill, R. T. Cline, O. White, C. M. Fraser, H. O. Smith, and J. C. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169.PubMedCrossRefGoogle Scholar
  22. 22.
    Huynen, M., B. Snel, and P. Bork. 2000. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10:1204–1210.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Huynen, M., T. Doerks, F. Eisenhaber, C. Orengo, S. Sunyaev, Y. Yuan, and P. Bork. 1998. Homology-based fold predictions for Mycoplasma genitalium proteins. J. Mol. Biol. 280:323–326.PubMedCrossRefGoogle Scholar
  24. 24.
    Karlin, S. and A. M. Campbell. 1994. Which bacterium is the ancestor of the animal mitochondrial genome? Proc. Natl. Acad. Sci. USA 91:12842–12846.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kokotovic, B., G. Bolske, P. Ahrens, and K. Johansson. 2000. Genomic variations of Mycoplasma capricolum subsp. capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis. FEMS Microbiol. Lett. 184:63–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Koonin, E. V. and P. Bork. 1996. Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. Trends Biochem. Sci. 21:128–129.PubMedCrossRefGoogle Scholar
  27. 27.
    Krause, D. C. 1996. Mycoplasma pneumoniae cytadherence: unravelling the tie that binds. Mol. Microbiol. 20:247–253.PubMedCrossRefGoogle Scholar
  28. 28.
    Manolukas, J. T., M. F. Barile, D. K. Chandler, and J. D. Pollack. 1988. Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. J. Gen. Microbiol. 134 (Pt 3):791–800.PubMedGoogle Scholar
  29. 29.
    Miyata, M. and S. Seto. 1999. Cell reproduction cycle of mycoplasma. Biochimie 81:873–878.PubMedCrossRefGoogle Scholar
  30. 30.
    Musco, G., G. Stier, C. Joseph, M. A. Castiglione Morelli, M. Nilges, T. J. Gibson, and A. Pastore. 1996. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 85:237–245.PubMedCrossRefGoogle Scholar
  31. 31.
    Mushegian, A. R. and E. V. Koonin. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93:10268–10273.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Neimark, H. C. and C. S. Lange. 1990. Pulse-field electrophoresis indicates full-length Mycoplasma chromosomes range widely in size. Nucleic Acids Res. 18:5443–5448.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pollack, J. D. 1997. Mycoplasma genes: a case for reflective annotation. Trends Microbiol. 5:413–419.PubMedCrossRefGoogle Scholar
  34. 34.
    Pollack, J. D. 2001. Ureaplasma urealyticum: an opportunity for combinatorial genomics. Trends Microbiol. 9:169–175.PubMedCrossRefGoogle Scholar
  35. 35.
    Pollack, J. D., M. V. Williams, and R. N. McElhaney. 1997. The comChapautive metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit. Rev. Microbiol. 23:269–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Pyle, L. E., L. N. Corcoran, B. G. Cocks, A. D. Bergemann, J. C. Whitley, and L. R. Finch. 1988. Pulsed-field electrophoresis indicates larger-than-expected sizes for mycoplasma genomes. Nucleic Acids Res. 16:6015–6025.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Robertson, J. A., L. E. Pyle, G. W. Stemke, and L. R. Finch. 1990. Human Ureaplasmas show diverse genome sizes by pulsed-field electrophoresis. Nucleic Acids Res. 18:1451–1455.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Rychlewski, L., B. Zhang, and A. Godzik. 1998. Fold and function predictions for Mycoplasma genitalium proteins. Fold Des. 3:229–238.PubMedCrossRefGoogle Scholar
  39. 39.
    Snel, B., G. Lehmann, P. Bork, and M. A. Huynen. 2000. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28:3442–3444.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Snel, B., P. Bork, and M. A. Huynen. 1999. Genome phylogeny based on gene content. Nat. Genet. 21:108–110.PubMedCrossRefGoogle Scholar
  41. 41.
    Sokal, R. R. and C. D. Michener. 1958. A statistical method of evaluating systematic relationships. Univ. Kansas Sci. bull. 28:1409–1438.Google Scholar
  42. 42.
    Suyama, M. and P. Bork. 2001. Evolution of prpkaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17:10–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Teichmann, S. A. and G. Mitchison. 1999. Is there a phylogenetic signal in prokaryote proteins? J. Mol. Evol. 49:98–107.PubMedCrossRefGoogle Scholar
  44. 44.
    Teichmann, S. A., A. G. Murzin, and C. Chothia. 2001. Determination of protein function, evolution and interactions by structural genomics. Curr. Opin. Struct. Biol. 11:354–363.PubMedCrossRefGoogle Scholar
  45. 45.
    Teichmann, S. A., C. Chothia, and M. Gerstein. 1999. Advances in structural genomics. Curr. Opin. Struct. Biol. 9:390–399.PubMedCrossRefGoogle Scholar
  46. 46.
    Trachtenberg, S. 1998. Mollicutes-wall-less bacteria with internal cytoskeletons. J. Struct. Biol. 124:244–256.PubMedCrossRefGoogle Scholar
  47. 47.
    Wolf, Y. I., N. V. Grishin, and E. V. Koonin. 2000. Estimating the number of protein folds and families from complete genome data. J. Mol. Biol. 299:897–905.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Thomas Dandekar
    • 1
  • Berend Snel
    • 1
  • Steffen Schmidt
    • 1
  • Warren Lathe
    • 1
  • Mikita Suyama
    • 1
  • Martijn Huynen
    • 1
  • Peer Bork
    • 1
  1. 1.EMBLHeidelbergGermany

Personalised recommendations