Skip to main content

Electrochemical Promotion and Metal-support Interactions

  • Chapter
Electrochemical Activation of Catalysis
  • 533 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Boudart, and G. Djega-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions, Princeton Univ. Press, Princeton, NJ (1984).

    Google Scholar 

  2. L.L. Hegedus, R. Aris, A.T. Bell, M. Boudart, N.Y. Chen, B.C. Gates, W.O. Haag, G.A. Somorjai, and J. Wei, Catalyst design: Progress and Perspectives, John Wiley & sons, New York (1987).

    Google Scholar 

  3. R.J. Farrauto, and C.H. Bartholomew, Fundamentals of industrial catalytic processes, Chapman & Hall, London (1997).

    Google Scholar 

  4. C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, Inc. (1991).

    Google Scholar 

  5. G. Ertl, H. Knötzinger, and J. Weitcamp, eds., Handbook of Catalysis, VCH Publishers, Weinheim (1997).

    Google Scholar 

  6. S.J. Tauster, S.C. Fung, and R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on TiO 2 , JACS 100, 170–175 (1978).

    Article  CAS  Google Scholar 

  7. G.L. Haller, and D.E. Resasco, Metal-Support Interaction: Group VIII Metals and Reducible Oxides, Advances in Catalysis 36, 173–235 (1989).

    CAS  Google Scholar 

  8. E.C. Akubuiro, and X.E. Verykios, Effects of dopants on performance of metal crystallites 2. Further characterization of doped supports and catalysts, J. Catal. 113, 106–119 (1988).

    Article  CAS  Google Scholar 

  9. M. Haruta, A. Ueda, S. Tsubota, and R.M.T. Sanchez, Low-temperature catalytic combustion of methanol and its decomposed derivative over supported gold catalysts, Catalysis Today 29, 443–447 (1996).

    Article  CAS  Google Scholar 

  10. Y. Iizuka, H. Fujiki, N. Yamauchi, T. Chijiiwa, S. Arai, S. Tsubota, and M. Haruta, Adsorption of CO on gold supported on TiO 2 , Catalysis Today 36, 115–123 (1997).

    Article  CAS  Google Scholar 

  11. S. Tsubota, D.A.H. Cunningham, Y. Bando, and M. Haruta, Preparation of nanometer gold strongly interacted with TiO 2 and the structure sensitivity in low-temperature oxidation of CO, in Preparation of catalysts VI, G. Ponchelet, ed. (1995), pp. 227–235.

    Google Scholar 

  12. Z. Hong, K.B. Fogash, and J.A. Dumesic, Reaction kinetic behavior of sulfated-zirconia catalysts for butane isomerization, Catalysis Today 51, 269–288 (1999).

    Article  CAS  Google Scholar 

  13. Y.D. Kim, A.P. Seitsonen, and H. Over, The atomic geometry of oxygen-rich Ru(0001) surfaces: coexistence of (1x1)O and RuO 2 (110) domains, Surf. Sci. 465, 1–8 (2000).

    Article  CAS  Google Scholar 

  14. D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, and E. Iglesia, Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures, J. Phys. Chem. 103(4), 630–640 (1999).

    CAS  Google Scholar 

  15. G. Meitzner, and E. Iglesia, New insights into methanol synthesis catalysts from X-ray absorption spectroscopy, Catalysis Today 53, 433–441 (1999).

    Article  CAS  Google Scholar 

  16. B.L. Mojet, J.T. Miller, D.E. Ramaker, and D.C. Koningsberger, A new model describing the metal-support interaction in noble metal catalysts, J. Catal. 186, 373–386 (1999).

    Article  CAS  Google Scholar 

  17. S. Tagliaferri, R.A. Koeppel, and A. Baiker, Influence of rhodium-and ceria-promotion of automotive palladium catalyst on its catalytic behaviour under steady-state and dynamic operation, Appl. Catal. B 15, 159–177 (1998).

    CAS  Google Scholar 

  18. A.Y. Stakheev, and L.M. Kustov, Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A 188, 3–35 (1999).

    CAS  Google Scholar 

  19. A. Cimino, D. Gazzoli, and M. Valigi, XPS quantitative analysis and models of supported oxide catalysts, Journal of Electron Spectroscopy and Related Phenomena 104, 1–29 (1999).

    Article  CAS  Google Scholar 

  20. S. Rossignol, C. Micheaud-Especel, and D. Duprez, Structural and catalytic properties of Zr-Ce-O mixed oxides. Role of the anionic vacancies, Stud. Surf. Sci. Catal. 130, 3327–3332 (2000).

    Google Scholar 

  21. R.M. Ferrizz, T. Egami, and J.M. Vohs, Temperature programmed desorption study of the reaction of C 2 H 4 and CO on Rh supported on α-Al 2 O 3 (0001), YSZ(100) and CeO 2 thin films, Surf. Sci. 465, 127–137 (2000).

    Article  CAS  Google Scholar 

  22. J. Nicole, D. Tsiplakides, C. Pliangos, X.E. Verykios, C. Comninellis, and C.G. Vayenas, Electrochemical Promotion and Metal-support interactions, J. Catal., in press (2001).

    Google Scholar 

  23. C.G. Vayenas, and G. Pitselis, Mathematical Modeling of Electrochemical Promotion and of Metal-Support Interactions, I&EC Research 40(20), 4209–4215 (2001).

    CAS  Google Scholar 

  24. C. Cavalca, G. Larsen, C.G. Vayenas, and G. Haller, Electrochemical Modification of CH 3 OH oxidation selectivity and activity on a Pt single-pellet catalytic reactor, J. Phys. Chem. 97, 6115–6119 (1993).

    Article  CAS  Google Scholar 

  25. I.V. Yentekakis, C.A. Pliangos, V.G. Papadakis, X.E. Verykios, and C.G. Vayenas, Support and NEMCA-induced Promotional Effects on the Activity of Automotive Exhaust Catalysts in A. Frennet and Journal-M. Bastin (eds.) Catalysis and Automotive Pollution Control III, Stud. Surf. Sci. Catal. 96, 375–385 (1995).

    Google Scholar 

  26. V.G. Papadakis, C.A. Pliangos, I.V. Yentekakis, X.E. Verykios, and C.G. Vayenas, Development of high performance, Pd-based, three-way catalysts, Catalysis Today 29, 71–75 (1996).

    Article  CAS  Google Scholar 

  27. C. Pliangos, I.V. Yentekakis, V.G. Papadakis, C.G. Vayenas, and X.E. Verykios, Support-induced promotional effects on the activity of automotive exhaust catalysts 1. The case of oxidation of light hydrocarbons, Appl. Catal. B 14, 161–173 (1997).

    CAS  Google Scholar 

  28. J. Nicole, and C. Comninellis, Electrochemical promotion of IrO 2 catalyst activity for the gas phase combustion of ethylene, J. Appl. Electrochem. 28, 223–226 (1998).

    Article  CAS  Google Scholar 

  29. J. Nicole, PhD Thesis, EPFL (1999).

    Google Scholar 

  30. S. Bebelis, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 1. The case of Ethylene Oxidation on Pt, J. Catal. 118, 125–146 (1989).

    Article  CAS  Google Scholar 

  31. C. Pliangos, I.V. Yentekakis, S. Ladas, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 9. Ethylene oxidation on Pt deposited on TiO 2 , J. Catal. 159, 189–203 (1996).

    Article  CAS  Google Scholar 

  32. S. Ladas, S. Kennou, S. Bebelis, and C.G. Vayenas, Origin of Non-Faradaic Electrochemical Modification of Catalytic Activity, J. Phys. Chem. 97, 8845–8847 (1993).

    Article  CAS  Google Scholar 

  33. C. Pliangos, I.V. Yentekakis, X.E. Verykios, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 8. Rh-catalyzed C 2 H 4 oxidation, J. Catal. 154, 124–136 (1995).

    Article  CAS  Google Scholar 

  34. C. Pliangos, PhD Thesis, Department of Chemical Engineering, University of Patras (1997).

    Google Scholar 

  35. S.G. Neophytides, and C.G. Vayenas, TPD and Cyclic Voltammetric Investigation of the Origin of Electrochemical Promotion in Catalysis, J. Phys. Chem. 99, 17063–17067 (1995).

    Article  CAS  Google Scholar 

  36. G. Pacchioni, F. Illas, S. Neophytides, and C.G. Vayenas, Quantum-Chemical Study of Electrochemical Promotion in Catalysis, J. Phys. Chem. 100, 16653–16661 (1996).

    Article  CAS  Google Scholar 

  37. D. Tsiplakides, and C.G. Vayenas, Electrode work function and absolute potential scale in solid state electrochemistry, J. Electrochem. Soc. 148(5), E189–E202 (2001).

    Article  CAS  Google Scholar 

  38. C.G. Vayenas, and S. Neophytides, Electrochemical Activation of Catalysis: In situ controlled promotion of catalyst surfaces, in Catalysis-Special periodical Report, Royal Society of Chemistry, Cambridge (1996), pp. 199–253.

    Google Scholar 

  39. C.G. Vayenas, I.V. Yentekakis, S.I. Bebelis, and S.G. Neophytides, In situ Controlled Promotion of Catalyst Surfaces via Solid Electrolytes: The NEMCA effect, Ber. Buns. Phys. Chem. 99(11), 1393–1401 (1995).

    CAS  Google Scholar 

  40. C.G. Vayenas, and I.V. Yentekakis, Electrochemical Modification of Catalytic Activity, in Handbook of Catalysis, G. Ertl, H. Knötzinger, and J. Weitcamp, eds., VCH Publishers, Weinheim (1997), pp. 1310–1338.

    Google Scholar 

  41. K.E. Karakitsou, and X.E. Verykios, Effects of altervalent cation doping of TiO 2 on its performance as a photocatalyst for water cleavage, J. Phys. Chem. 97, 1184–1189 (1993).

    Article  CAS  Google Scholar 

  42. T. Ioannides, and X.E. Verykios, Charge transfer in metal catalysts supported on Doped TiO 2 : A Theoretical approach based on metal-semiconductor contact theory, J. Catal. 161, 560–569 (1996).

    Article  CAS  Google Scholar 

  43. S. Bebelis, M. Makri, A. Buekenhoudt, J. Luyten, S. Brosda, P. Petrolekas, C. Pliangos, and C.G. Vayenas, Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors, Solid State Ionics 129, 33–46 (2000).

    Article  CAS  Google Scholar 

  44. R. Lewis, and R. Gomer, Adsorption of Oxygen on Platinum, Surf. Sci. 12, 157–176 (1968).

    Article  CAS  Google Scholar 

  45. J. Wei, Quo Vadis Reaction Engineering?, Chem. Eng. Sci. 47(9–11), 2983–2984 (1992).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Electrochemical Promotion and Metal-support Interactions. In: Electrochemical Activation of Catalysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47551-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47551-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46719-6

  • Online ISBN: 978-0-306-47551-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics