Sexual dimorphism in calanoid copepods: morphology and function

  • Susumu Ohtsuka
  • Rony Huys
Part of the Developments in Hydrobiology book series (DIHY, volume 156)


Mate location and recognition are essentially asymmetrical processes in the reproductive biology of calanoid copepods with the active partner (the male) locating and catching the largely passive partner (the female). This behavioural asymmetry has led to the evolution of sexual dimorphism in copepods, playing many pivotal roles during the various successive phases of copulatory and post-copulatory behaviour. Sexually dimorphic appendages and structures are engaged in (1) mate recognition by the male; (2) capture of the female by the male; (3) transfer and attachment of a spermatophore to the female by the male; (4) removal of discharged spermatophore(s) by the female; and (5) fertilization and release of the eggs by the female. In many male calanoids, the antennulary chemosensory system is enhanced at the final moult and this enhancement appears to be strongly linked to their mate-locating role, i.e. detection of sex pheromones released by the female. It can be extreme in calanoids inhabiting oceanic waters, taking the form of a doubling in the number of aesthetascs on almost every segment, and is less expressed in forms residing in turbulent, neritic waters. Mate recognition is a process where chemoreception and mechanoreception presumably work in conjunction. The less elaborate male chemosensory system in the Centropagoidea is counterbalanced by females playing a more active role in generating hydromechanical cues. This is reflected in females in the shape of the posterior prosomal margin, the complexity of urosomal morphology and the size of the caudal setae. Visual mate recognition may be important in the Pontellidae, which typically show sexual dimorphism in eye design. The most distinctive sexual dimorphism is the atrophy of the mouthparts of non-feeding males, illustrating how copepod detection systems can be shifted to a new modality at the final moult. In the next phase, the male captures the female using the geniculate antennule and/or other appendages. Three types of antennulary geniculations are recognized, and their detailed morphology suggests that they have originated independently. Grasping efficiency can be enhanced by the development of supplemental hinges. The scanty data on capture mechanisms in males lacking geniculate antennules are reviewed. It is suggested that the loss of the antennulary geniculation in many non-centropagoidean calanoids has evolved in response to increasing predator pressure imposed on pairs in amplexus. Spermatophore transfer and placement are generally accomplished by the modified leg 5 of the male. In some males, leg 5 consists of both a chelate grasping leg and a spermatophore-transferring leg, whereas in others, only the latter is developed. Tufts of fine setules/spinules and/or sclerotized elements on the terminal portion of the leg are involved in the transfer and attachment of the spermatophore. The configuration of gonopores, copulatory pores and their connecting ducts in the female genital double-somite is diversified in the early calanoid offshoots such as Arietellidae and Metridinidae, whereas in more derived groups, it is constant and invariable, with paired gonopores and copulatory pores located beneath a single genital operculum. The absence of seminal receptacles in most Centropagoidea limits the fermale’s ability to store sufficient sperm for multiple egg batches, suggesting that repeated mating is necessary for sustained egg production. Discharged spermatophores are usually removed by the female leg 5 and/or specialized elements on other legs. In Tortanus (Atortus) Ohtsuka, which has rudimentary fifth legs in the female and complex coupling devices in the male, a spermatophore supposedly remains on the female urosome, since eggs appear to be released from a ventral opening of the spermatophore. The type of sexual dimorphism is closely related to habitat and biology. Some hyperbenthic families never show multiplication of aesthetascs on the male antennule, whereas families of the open pelagic realm such as the Aetideidae always have non-feeding males exhibiting secondary multiplication of antennulary aesthetascs. The various aspects and diversity of calanoid sexual dimorphism are herein considered in an evolutionary context.


copepod calanoid sexual dimorphism mating post-mating phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronov, V. N., 1970. Some problems of taxonomy of the family Paracalanidae (Copepoda). Zool. Zh. 49: 980–985 (in Russian with English abstract).Google Scholar
  2. Andronov, V. N., 1974. Phylogenetic relations of large taxa within the suborder Calanoida (Crustacea, Copepoda). Zool. Zh. 53: 1002–1012 (in Russian with English abstract).Google Scholar
  3. Andronov, V. N., 1992. Ryocalanus admirabilis sp. n. (Copepoda, Calanoida, Ryocalanidae) from the central-eastern Atlantic. Zool. Zh. 71: 140–144 (in Russian with English abstract).Google Scholar
  4. Atkinson, A., 1991. Life cycles of Calanoides acutus, Calanus simillimus and Rhincalanus gigas (Copepoda: Calanoida) within the Scotia Seas. Mar. Biol. 109: 79–91.CrossRefGoogle Scholar
  5. Barthélémy, R.-M., 1999. Functional morphology and taxonomic relevance of the female genital structures in the Acartiidae (Copepoda: Calanoida). J. mar. biol. Ass. U.K. 79: 857–870.Google Scholar
  6. Barthélémy, R.-M., C. Cuoc, D. Defaye, M. Brunet & J. Mazza, 1998. Female genital structures in several families of Centropagoidea (Copepoda: Calanoida). Phil. Trans. r. Soc. Lond. B 353: 721–736.Google Scholar
  7. Blades, P. I., 1977. Mating behaviour of Centropages typicus (Copepoda: Calanoida). Mar. Biol. 40: 57–64.CrossRefGoogle Scholar
  8. Blades, P. I. & M. J. Youngbluth, 1979. Mating behavior of Labidocera aestiva (Copepoda: Calanoida). Mar. Biol. 51: 339–355.CrossRefGoogle Scholar
  9. Blades, P. I. & M. J. Youngbluth, 1980. Morphological, physiological and behavioural aspects of mating in calanoid copepods. In Kerfoot W. C. (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.): 39–51.Google Scholar
  10. Blades-Eckelbarger, P. I., 1991. Functional morphology of spermatophores and sperm transfer in calanoid copepods. In Bauer R. T. & J. W. Martin (eds), Crustacean Sexual Biology. Columbia University Press, New York: 246–270.Google Scholar
  11. Bowman, T. E. & J. G. Gonzalez, 1961. Four new species of Pseudocyclops (Copepoda: Calanoida) from Puerto Rico. Proc. U.S. natn. Mus. 113: 37–59.Google Scholar
  12. Boxshall, G. A., 1985. The comparative anatomy of two copepods, a predatory calanoid and a particle-feeding mormonilloid. Phil. Trans, r. Soc. Lond. B 311: 303–377.Google Scholar
  13. Boxshall, G. A. & R. Huys, 1998. The ontogeny and phylogeny of copepod antennules. Phil. Trans. r. Soc. Lond. B 353: 765–786.Google Scholar
  14. Boxshall, G. A., J. Yen & J. R. Strickler, 1997. Functional significance of sexual dimorphism in the cephalic appendages of Euchaeta rimana Bradford. Bull. mar. Sci. 61: 387–398.Google Scholar
  15. Bradford, J. M., 1988. Review of the taxonomy of the Calanidae (Copepoda) and the limits to the genus Calanus. Hydrobiologia 167/168: 73–81.CrossRefGoogle Scholar
  16. Bradford, J. M., L. Haakonssen & J. B. Jillett, 1983. The marine fauna of New Zealand: pelagic calanoid copepods: families Euchaetidae, Phaennidae, Scolecithricidae, Diaixidae and Tharybidae. Mem. N.Z. oceanogr. Inst. 90: 1–150.Google Scholar
  17. Bradford, J. M. & J. B. Jillett, 1980. The marine fauna of New Zealand: pelagic calanoid copepods: family Aetideidae. N.Z. oceanogr. Inst. Mem. 86: 1–102.Google Scholar
  18. Bradford-Grieve, J. M., 1994. The marine fauna of New Zealand: pelagic calanoid Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. Mem. Z. Z. oceanogr. Inst. 102: 1–160.Google Scholar
  19. Bradford-Grieve, J. M., 1999. The marine fauna of New Zealand: pelagic calanoid Copepoda: Bathypontiidae, Arietellidae, Augaptilidae, Heterorhabdidae, Lucicutiidae, Metridinidae, Phyllopodidae, Centropagidae, Pseudodiaptomidae, Temoridae, Candaciidae, Pontellidae, Sulcanidae, Acartiidae, Tortanidae. Mem. N.Z. oceanogr. Inst. 111: 1–268.Google Scholar
  20. Braga, E., R. Zardoya, A. Meyer & J. Yen, 1999. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Mar. Biol. 133: 79–90.CrossRefGoogle Scholar
  21. Cuoc, C., D. Defaye, M. Brunet, R. Notonier & J. Mazza, 1997. Female genital structures of Metridinidae (Copepoda, Calanoida). Mar. Biol. 129: 651–665.CrossRefGoogle Scholar
  22. Damkaer, D. M., 1975. Calanoid copepods of the genera Spinocalanus and Mimocalanus from the central Arctic Ocean, with a review of the Spinocalanidae. NOAA tech. Rep. NMFR Circ. 391: 1–88.Google Scholar
  23. Deevey, G. B., 1973. Bathypontia (Copepoda: Calanoida): six species, one new, from the Sargasso Sea. Proc. biol. Soc. Wash. 86: 357–372.Google Scholar
  24. Ferrari, F. D., 1978. Spermatophore placement in the copepod Euchaeta norvegica Boeck 1872 from deepwater dumpsite 106. Proc. biol. Soc. Wash. 91: 509–521.Google Scholar
  25. Ferrari, F. D. & A. Benforado, 1998. Setation and setal groups on antenna 1 of Ridgewayia klausruetzleri, Pleuromamma xiphias and Pseudocalanus elongatus (Crustacea: Copepoda: Calanoida) during the copepodid phase of their development. Proc. Biol. Soc. Wash. 11: 209–221.Google Scholar
  26. Ferrari, F. D. & M. Dojiri, 1987. The calanoid copepod Euchaeta antarctica from Southern Ocean Atlantic sector midwater trawls, with observations on spermatophore dimorphism. J. crust. Biol. 7: 458–180.Google Scholar
  27. Fleminger, A., 1973. Pattern, number, variability and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoida). Fishery Bull. natn. ocean. atmos. Adm. 71: 956–1010.Google Scholar
  28. Fleminger, A., 1975. Geographical distribution and morphological divergence in American coastal-zone planktonic copepods of the genus Labidocera. In Cronin L. E. (ed.), Chemistry, Biology and the Estuarine System. Estuar. Res. 1: 392–419.Google Scholar
  29. Fleminger, A., 1985. Dimorphism and possible sex change in copepods of the family Calanidae. Mar. Biol. 88: 273–294.CrossRefGoogle Scholar
  30. Fleminger, A. & K. Hulsemann, 1977. Geographical range and taxonomic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis). Mar. Biol. 40: 233–248.CrossRefGoogle Scholar
  31. Fosshagen, A., G. A. Boxshall & T. M. Iliffe, 2001. The Epacteriscidae, a cave-living family of calanoid copepods. Sarsia 86, in press.Google Scholar
  32. Frost, B. W. & A. Fleminger, 1968. A revision of the genus Clausocalanus (Copepoda: Calanoida) with remarks on distributional patterns in diagnostic characters. Bull. Scripps Inst. Oceanogr., tech. Ser. 12: 1–235.Google Scholar
  33. Giesbrecht, W., 1892. Systematik und Faunistik der pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna Flora Golf. Neapel 19: 1–831.Google Scholar
  34. Greene, C. H. & M. R. Landry, 1985. Patterns of prey selection in the cruising calanoid predator Euchaeta elongata. Ecology 66: 1408–1416.Google Scholar
  35. Grice, G. D. & K. Hulsemann, 1965. Abundance, vertical distribution and taxonomy of calanoid copepods at selected stations in the north-east Atlantic. J. Zool., Lond. 146: 213–262.CrossRefGoogle Scholar
  36. Griffith, A. M. & B. W. Frost, 1976. Chemical communication in the marine planktonic copepods Calanus pacificus and Pseudocalanus sp. Crustaceana 30: 1–8.Google Scholar
  37. Heberer, G., 1932. Untersuchungen über Bau und Funktion der Genitalorgane der Copepoden. I. Der männliche Genitalapparat der calanoiden Copepoden. Z. mikrosk. anat. Forsch. 31: 250–424.Google Scholar
  38. Herring, P. J., 1988. Copepod luminescence. Hydrobiologia 167/168: 183–195.CrossRefGoogle Scholar
  39. Hopkins, C. C. E., J. Mauchline & D. S. McLusky, 1978. Structure and function of the fifth pair of pleopods of male Euchaeta norvegica (Copepoda: Calanoida). J. mar. biol. Ass. U.K. 58: 631–637.Google Scholar
  40. Hulsemann, K. & A. Fleminger, 1990. Taxonomic value of minute structures on the genital segment of Pontellina females (Copepoda: Calanoida). Mar. Biol. 105: 99–108.CrossRefGoogle Scholar
  41. Huys, R. & G. A. Boxshall, 1991. Copepod evolution, The Ray Society, London: 468 pp.Google Scholar
  42. Jacoby, C. A. & M. J. Youngbluth, 1983. Mating behavior in three species of Pseudodiaptomus (Copepoda: Calanoida). Mar. Biol. 76:77–86.CrossRefGoogle Scholar
  43. Katona, S. K., 1973. Evidence for sex pheromones in planktonic copepods. Limnol. Oceanogr. 18: 574–583.Google Scholar
  44. Katona, S. K., 1975. Copulation in the copepod Eurytemora affinis (Poppe,1880). Crustaceana 28: 89–94.CrossRefGoogle Scholar
  45. Kimoto, K., J. Nakashima & Y. Morioka, 1988. Direct observations of copepod swarm in small inlet of Kyushu, Japan. Bull. Seikai reg. Fish. Res. Lab. 66: 41–58.Google Scholar
  46. Land, M. F., 1984. Crustacea. In Ali M. A. (ed.), Photoreception and Vision in Invertebrates. NATO ASI Series A, Life Sciences 74: 401–438.Google Scholar
  47. Land, M. F., 1988. The functions of eye and body movements in Labidocera and other copepods. J. exp. Biol. 140: 381–391.Google Scholar
  48. Landry, M. R. & V. L. Fagerness, 1988. Behavioral and morphological influences on predatory interactions among marine copepods. Bull. mar. Sci. 43: 509–529.Google Scholar
  49. Lee, C. M., 1972. Structure and function of the spermatophore and its coupling device in the Centropagidac (Copepoda: Calanoida). Bull. mar. Ecol. 8: 1–20.Google Scholar
  50. Markhaseva, E. L., 1996. Calanoid copepods of the family Aetideidae of the world ocean. Proc. Zool. Inst. russ. Acad. Sci. 268: 1–331.Google Scholar
  51. Markhaseva, E. L. & F. D. Ferrari, 1996. Three new species of Ryocalanus from the eastern tropical Pacific (Crustacea, Copepoda: Ryocalanidae). Zoosystematica Rossica 4: 63–70.Google Scholar
  52. Matthews, J. B. L., 1964. On the biology of some bottom-living copepods (Aetideidae and Phaennidae) from western Norway. Sarsia 16: 1–46.Google Scholar
  53. Mauchline, J., 1998. The biology of calanoid copepods. Adv. mar. Biol. 33: 1–710.Google Scholar
  54. Miller, C. B., B. W. Frost, H. P. Batchelder, M. I. Clemons & R. E. Conway, 1984. Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus and Eucalanus bungii in the northeast Pacific. Prog. Oceanogr. 13: 201–243.CrossRefGoogle Scholar
  55. Nishida, S., 1989. Distribution, structure and importance of the cephalic dorsal hump, a new sensory organ in calanoid copepods. Mar. Biol. 101: 173–185.CrossRefGoogle Scholar
  56. Ohman, M. D. & A. W. Townsend, 1998. Egg strings in Euchirella pseudopulchra (Aetideidae) and comments on constraints on egg brooding in planktonic marine copepods. J. mar. Syst. 15: 61–69.CrossRefGoogle Scholar
  57. Ohtsuka, S., 1992. Calanoid copepods collected from the near-bottom in Tanabe Bay on the Pacific coast of the Middle Honshu, Japan. IV. Pseudocyclopiidae. Publ. Seto mar. biol. Lab. 35: 295–301.Google Scholar
  58. Ohtsuka, S., G. A. Boxshall & H. S. J. Roe, 1994. Phylogenetic relationships between arietellid genera (Copepoda: Calanoida), with the establishment of three new genera. Bull. nat. Hist. Mus. Lond. (Zool.) 60: 105–172.Google Scholar
  59. Ohtsuka, S., A. Fosshagen & S. Putchakarn, 1999. Three new species of the demersal calanoid copepod Pseudocyclops from Phuket, Thailand. Plankton Biol. Ecol. 46: 132–147.Google Scholar
  60. Ohtsuka, S. & K. Kimoto, 1989. Tortanus (Atortus) (Copepoda: Calanoida) of southern Japanese waters, with description of two new species, T. (A.) digitalis and T. (A.) ryukyuensis, and discussion on distribution and swarming behaviour of Atortus. J. crust. Biol. 9: 392–408.Google Scholar
  61. Ohtsuka, S. & J. W. Reid, 1998. Phylogeny and zoogeography of the planktonic copepod genus Tortanus (Calanoida: Tortanidae), with establishment of a new subgenus and descriptions of two new species. J. crust. Biol. 18: 774–807.Google Scholar
  62. Ohtsuka, S., H. S. J. Roe & G. A. Boxshall, 1993. A new family of calanoid copepods, the Hyperbionycidae, collected from the deep-sea hyperbenthic community in the northeastern Atlantic. Sarsia 78: 69–82.Google Scholar
  63. Ohtsuka, S., H. Y. Soh & S. Nishida, 1997. Evolutionary switching from suspension feeding to carnivory in the calanoid family Heterorhabdidae (Copepoda). J. crust. Biol. 17: 577–595.Google Scholar
  64. Othman, B. H. R., 1987. Two new species of Tortanus (Crustacea, Copepoda) from Sabah, Malaysia. Malayan nat. J. 41: 61–73.Google Scholar
  65. Park, T., 1986. Phylogeny of calanoid copepods. Syllogeus 58: 191–196.Google Scholar
  66. Price, H. J., G.-A. Paffenhöfer & J. R. Strickler, 1983. Modes of cell capture in calanoid copepods. Limnol. Oceanogr. 28: 116–123.CrossRefGoogle Scholar
  67. Sars, G. O., 1902. Copepoda Calanoida. An Account of the Crustacea of Norway, with short descriptions and figures of all the species 4: 29–144, pls. 17–96.Google Scholar
  68. Schnack-Schiel, S. B & E. Mizdalski, 1994. Seasonal variations in distribution and population structure of Microcalanus pygmaeus and Ctenocalanus citer (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. Mar. Biol. 119: 357–366.CrossRefGoogle Scholar
  69. Schulz, K., 1990. Pterochirella tuerkayi, a new genus, new species, an unusual calanoid copepod from the deep Gulf of Aden (Indian Ocean). Mitt. hamb. zool. Mus. Inst. 87: 181–189.Google Scholar
  70. Snell, T. W. & M. J. Garmona, 1994. Surface glycoproteins in copepods: potential signals for mate recognition. Hydrobiologia 292/293: 255–264.CrossRefGoogle Scholar
  71. Snell, T. W. & P. D. Morris, 1993. Sexual communication in copepods and rotifers. Hydrobiologia 255/256: 109–116.CrossRefGoogle Scholar
  72. Soh, H. Y., 1998. Phylogenetic studies of the calanoid copepod superfamily Arietelloidea, with notes on distribution and feeding habits. Doctoral thesis, Hiroshima University, Hiroshima.Google Scholar
  73. Soh, H.Y., S. Ohtsuka, H. Imabayashi & H.-L. Suh, 1999. A new deep-water calanoid copepod and the phylogeny of the genus Nullosetigera nom. nov. in the Nullosetigeridae nom. nov. (pro Phyllopus: Phyllopodidae) from Japanese waters. J. nat. Hist.: 1581–1602.Google Scholar
  74. Strickler, R. & A. K. Bal, 1973. Setae of the first antennae of the copepod Cyclops scutifer (Sars): their structure and importance. Proc. natn. Acad. Sci., U.S.A. 70: 2656–2659.Google Scholar
  75. Suárez-Morales, E. & T. M. Iliffe, 1996. New superfamily of Calanoida (Copepoda) from an anchialine cave in the Bahamas. J. crust. Biol. 16: 754–762.Google Scholar
  76. Svensson, J. E., 1992. The influence of visibility and escape ability on sex-specific susceptibility to fish predation in Eudiaptomus gracilis (Copepoda, Crustacea). Hydrobiologia 234: 143–150.Google Scholar
  77. Tanaka, O., 1956. Rare species of Copepoda Calanoida taken from the Izu region. Breviora 64: 1–8.Google Scholar
  78. Tsuda, A., 1995. “The paradox of the plankton” and species diversity in plankton communities: a review. Bull. Plankton Soc. Japan 42: 105–121 (in Japanese with English abstract).Google Scholar
  79. Tsuda, A. & C. B. Miller, 1998. Mate finding behavior in Calanus marshallae Frost. Phil. Trans. r. Soc. Lond. B353: 713–720.Google Scholar
  80. Tsukagoshi, A., 1988. Reproductive character displacement in the ostracod genus Cythere. J. crust. Biol. 8: 563–575.Google Scholar
  81. Tsukagoshi, A., 1989. The character of male copulatory organ and the distributional pattern of normal pore canals in the ostracod genus Cythere. Bull. Jap. Assoc. Benthol. 35/36: 89–96 (in Japanese with English abstract).Google Scholar
  82. Ueda, H., A. Kawahara, M. Tanaka & M. Azeta, 1983. Underwater observations on copepod swarms in temperate and subtropical waters. Mar. Ecol. Prog. Sen 11: 165–171.Google Scholar
  83. Van Duren, L. A. & J. J. Videler, 1996. The trade-off between feeding, mate seeking and predator avoidance in copepods: behavioral responses to chemical cues. J. Plankton Res. 18: 805–818.Google Scholar
  84. Van Duren, L. A., E. J. Stamhuis & J. J. Videler, 1998. Reading the copepod personal ads: increasing encounter probability with hydromechanical signals. Phil. Trans. r. Soc. Lond. B353: 691–700.Google Scholar
  85. Vaupel Klein, J. C. von, 1982. A taxonomic review of the genus Euchirella Giesbrecht, 1888 (Copepoda, Calanoida). II. The type-species, Euchirella messinensis (Claus, 1863). A. The female of f. typica. Zool. Verh. Leiden 198: 1–131.Google Scholar
  86. Vaupel Klein, J. C. von, 1998. Interpretation of character phylogenies in calanoid copepods by implementing Dollo’s law. J. crust. Biol. 18: 153–160.Google Scholar
  87. Walter, T. C., 1989. Review of the New World species of Pseudodiaptomus (Copepoda: Calanoida), with a key to the species. Bull. mar. Sci. 45: 590–628.Google Scholar
  88. Yen, J., 1988. Directionality and swimming speeds in predator-prey and male-female interactions of Euchaeta rimana, a subtropical marine copepod. Bull. mar. Sci. 43: 395–403.Google Scholar
  89. Yen, J. & J. R. Strickler, 1996. Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invert. Biol. 115: 191–205.Google Scholar
  90. Yen, J., M. C. Weissburg & M. H. Doall, 1998. The fluid physics of signal perception by mate-tracking copepods. Phil. Trans. r. Soc. Lond. B 353: 787–804.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Susumu Ohtsuka
    • 1
  • Rony Huys
    • 2
  1. 1.Fisheries LaboratoryHiroshima UniversityHiroshimaJapan
  2. 2.Department of ZoologyThe NaturalHistory MuseumLondonUK

Personalised recommendations