Advertisement

Zinc Nutriture as Related to Brain

  • Harold H. Sandstead
  • Christopher J. Frederickson
  • James G. Penland
Chapter
  • 21 Downloads

Keywords

Zinc Deficiency Zinc Supplementation Acrodermatitis Enteropathica Double Blind RCTs Maternal Zinc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashworth, A., Morris, S.S., Lira, P.I., and Grantham-McGregor, S.M. (1998). Zinc supplementation, mental development and behavior in low-birth-weight-term-infants in northeast Brazil. Eur. J. Clin. Nutr.52, 223–227.Google Scholar
  2. Bentley, M.E., Caulfield, L.E., Ram, M., Santizo, M.C., Hurtado, E., Rivera, J.A., Ruel, M.T., and Brown, K.H. (1997). Zinc supplementation affects the activity patterns of rural Guatemalan infants. J. Nutr.127, 1333–1338.PubMedGoogle Scholar
  3. Browning, J. and O’Dell, B. (1995). Zinc deficiency decreases the concentration of N-methyl-D-aspartate receptors in guinea pig cortical synaptic membranes. J. Nutr.125, 2083–2089.PubMedGoogle Scholar
  4. Buell, S.J., Fosmire, G.J., Ollerich, D.A., and Sandstead, H.H. (1977). Effects of postnatal zinc deficiency on cerebellar and hippocampal development in the rat. Exp. Neurol55, 199–210.PubMedGoogle Scholar
  5. Burnet, F.M. (1981). A possible role of zinc in the pathology of dementia. Lancet1, 186–188.PubMedGoogle Scholar
  6. Bush, A.I., Pettingell, W.H., Multhaup, G., d Paradis, M., Vonsattel, J.P., Gusella, J.F., Beyreuther, K., Masters, C.L., and Tanzi, R.E. (1994). Rapid induction of Alzheimer A beta amyloid formation by zinc [see comments]. Science265, 1464–1467PubMedGoogle Scholar
  7. Caldwell, D.F., Oberleas, D., Clancy, J.J., and Prasad, A.S. (1970). Behavioral impairment in adult rats following acute zinc deficiency. Proc, Soc, Exp. Biol Med, 133, 1417–1421.Google Scholar
  8. Cavan, K.R., Gibson, R.S., Grazioso, C.F., Isalgue, A.M., Ruz, M., and Solomons, N.W. (1993). Growth and body composition of periurban Guatemalan children in relation to zinc status: a cross-sectional study. Am. J. Clin. Nutr.57, 334–343.PubMedGoogle Scholar
  9. Çavdar, A.O., Babacan, E., Asik, S., Arcasoy, A., Ertem, U., Himmetoglu, O., Baycu, T., and Akar, N. (1983). Zinc levels of serum, plasma, erythrocytes and hair in Turkish women with anencephalic babies. Prog. Clin. Biol. Res.129, 99–106.PubMedGoogle Scholar
  10. Çavdar, A.O., Bahceci, M., Akar, N., Erten, J., Bahceci, G., Babacan, E., Arcasoy, A., and Yavuz, H. (1988). Zinc status in pregnancy and the occurrence of anencephaly in Turkey. J. Trace. Elem. Electrolytes Health Dis.2, 9–14.PubMedGoogle Scholar
  11. Churchich, J., Scholz, G., and Kwok, F. (1989). Activation of pyridoxal kinase by metallothionein. Biochim. Biophys. Acta.996, 181–186.PubMedGoogle Scholar
  12. Dakshinamurti, K., Paulose, C., Viswanathan, M., Siow, Y., and Sharma, S. (1990). Neurobiology of pyridoxine. Ann. NY Acad. Sci.585, 128–144.PubMedGoogle Scholar
  13. Duerre, J.A., Ford, K.M., and Sandstead, H.H. (1977). Effect of zinc deficiency on protein synthesis in brain and liver of suckling rats. J. Nutr.107, 1082–1093.PubMedGoogle Scholar
  14. Dvergsten, C. (1984). Retarded synaptogenesis and differentiation of cerebellar neurons in zinc-deficient rats. In The Neurobiology of Zinc Part B: deficiency, Toxicity, and Pathology, vol. 11 (ed. C. Fredericksen, G. Howell and E. Kasarkis), pp. 17–31. New York: Alan R Liss, Inc.Google Scholar
  15. Fosmire, C.J., al-Ubaidi, Y.Y., and Sandstead, H.H. (1974). The effect of zinc deprivation on the brain. Adv. Exp. Med Biol.48, 329–345.PubMedGoogle Scholar
  16. Frederickson, C.J., Hernandez, M.D., and McGinty, IF. (1989). Translocation of zinc may contribute to seizure-induced death of neurons. Brain. Res.480, 317–321.PubMedGoogle Scholar
  17. Frederickson, C.J., Manton, W.I., Frederickson, M.H., Howell, G.A., and Mallory, M.A. (1982). Stable-isotope dilution measurement of zinc and lead in rat hippocampus and spinal cord. Brain. Res.246, 338–341.PubMedGoogle Scholar
  18. Frederickson, C.J. and Moncrieff, D.W. (1994). Zinc-containing neurons. Biol. Signals3, 127–139.PubMedGoogle Scholar
  19. Frederickson, R.E., Frederickson, C.J., and Danscher, G. (1990). In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task. Behav. Brain. Res.38, 25–33.PubMedGoogle Scholar
  20. Friel, J.K., Andrews, W.L., Matthew, J.D., Long, D.R., Cornel, A.M., Cox, M., McKim, E., and Zerbe, G.O. (1993). Zinc supplementation in very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 17, 97–104.PubMedGoogle Scholar
  21. Gasull, T., Giralt, M., Hernandez, J., Martinez, P., Bremner, I., and Hidalgo, J. (1994). Regulation of metallothionein concentrations in rat brain: effect of glucocorticoids, zinc, copper, and endotoxin. Am. J. Physiol.266, E760–E767.PubMedGoogle Scholar
  22. Gibson, R.S., VanderKooy, P.D., MacDonald, A.C., Goldman, A., Ryan, B.A., and Berry, M. (1989). A growth-limiting, mild zinc-deficiency syndrome in some southern Ontario boys with low height percentiles. Am. J. Clin. Nutr.49, 1266–1273.PubMedGoogle Scholar
  23. Golub, M.S., Keen, C.L., Gershwin, M.E., and Hendrickx, A.G. (1995). Developmental zinc deficiency and behavior. J. Nutr.125, 2263S–2271S.PubMedGoogle Scholar
  24. Halas, E.S. and Eberhardt, M.J. (1987). A behavioral review of trace element deficiencies in animals and humans. Nutr. Behav.3, 257–271.Google Scholar
  25. Hambidge, K.M., Neldner, K.H., and Walravens, P.A. (1975). Letter: Zinc, acrodermatitis enteropathica, and congenital malformations. Lancet1, 577–578.Google Scholar
  26. Hao, R., Cerutis, D.R., Blaxall, H.S., Rodriguez-Sierra, J.F., Pfeiffer, R.F., and Ebadi, M. (1994). Distribution of zinc metallothionein I mRNA in rat brain using in situ hybridization. Neurochem. Res.19, 761–767.PubMedGoogle Scholar
  27. Henkin, R.I., Patten, B.M., Re, P.K., and Bronzert, D.A. (1975). A syndrome of acute zinc loss. Cerebellar dysfunction, mental changes, anorexia, and taste and smell dysfunction. Arch. Neurol.32, 745–751.Google Scholar
  28. Hesse, G.W. (1979). Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers. Science205, 1005–1007.PubMedGoogle Scholar
  29. Hesse, G.W., Hesse, K.A., and Catalanotto, F.A. (1979). Behavioral characteristics of rats experiencing chronic zinc deficiency. Physiol. Behav.22, 211–215.PubMedGoogle Scholar
  30. Howell, G.A., Welch, M.G., and Frederickson, C.J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature308, 736–738.PubMedGoogle Scholar
  31. Hsu, Y.P., Weyler, W., Chen, S., Sims, K.B., Rinehart, W.B., Utterback, M.C., Powell, J.F., and Breakefield, X.O. (1988). Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J. Neurochem.51, 1321–1324.PubMedGoogle Scholar
  32. Hurley, L.S. and Swenerton, H. (1966). Congenital malformations resulting from zinc deficiency in rats. Proc. Soc. Exp. Biol. Med.123, 692–696.PubMedGoogle Scholar
  33. Jacob, C., Maret, W., and Vallee, B.L. (1999). Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc. Natl. Acad. Sci. USA96, 1910–1914.Google Scholar
  34. Jiang, L.J., Maret, W., and Vallee, B.L. (1998a). The ATP-metallothionein complex. Proc. Natl. Acad. Sci. USA95, 9146–9149.PubMedGoogle Scholar
  35. Jiang, L.J., Maret, W., and Vallee, B.L. (1998b). The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc. Natl. Acad. Sci. USA95, 3483–3488.PubMedGoogle Scholar
  36. Kay, R.G., Tasman-Jones, C., Pybus, J., Whiting, R., and Black, H. (1976). A syndrome of acute zinc deficiency during total parenteral alimentation in man. Ann. Surg.183, 331–340.PubMedPubMedCentralGoogle Scholar
  37. Kirksey, A., Rahmanifar, A., Wachs, T.D., McCabe, G.P., Bassily, N.S., Bishry, Z., Galal, O.M., Harrison, G.G., and Jerome, N.W. (1991). Determinants of pregnancy outcome and newborn behavior of a semirural Egyptian population. Am. J. Clin. Nutr.54, 657–667.PubMedGoogle Scholar
  38. Kirksey, A., Wachs, T.D., Yunis, F., Srinath, U., Rahmanifar, A., McCabe, G.P., Galal, O.M., Harrison, G.G., and Jerome, N.W. (1994). Relation of maternal zinc nutriture to pregnancy outcome and infant development in an Egyptian village. Am. J. Clin. Nutr.60, 782–792.PubMedGoogle Scholar
  39. Lieberman, I. and Ove, P. (1962). Deoxyribonucleic acid synthesis and its inhibition in mammalian cells-cultured from the animal. J. Biol. Chem.237, 1634–1642.PubMedGoogle Scholar
  40. Massaro, T.F., Mohs, M., and Fosmire, G. (1982). Effects of moderate zinc deficiency on cognitive performance in young adult rats. Physiol. Behav.29, 117–121.PubMedGoogle Scholar
  41. Masters, B.A., Quaife, C.J., Erickson, J.C., Kelly, E.J., Froelick, G.J., Zambrowicz, B.P., Brinster, R.L., and Palmiter, R.D. (1994). Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci.14, 5844–5857.PubMedPubMedCentralGoogle Scholar
  42. McKenzie, J.M., Fosmire, G.J., and Sandstead, H.H. (1975). Zinc deficiency during the latter third of pregnancy: effects on fetal rat brain, liver, and placenta. J. Nutr.105, 1466–1475.PubMedGoogle Scholar
  43. Moynahan, E.J. (1976). Letter: Zinc deficiency and disturbances of mood and visual behavior. Lancet1, 91.PubMedGoogle Scholar
  44. Palmiter, R.D., Cole, T.B., Quaife, C.J., and Findley, S.D. (1996). ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA93, 14934–14939.Google Scholar
  45. Pekarek, R.S., Sandstead, H.H., Jacob, R.A., and Barcome, D.F. (1979). Abnormal cellular immune responses during acquired zinc deficiency. Am. J. Clin. Nutr.32, 1466–1471.PubMedGoogle Scholar
  46. Penland, J.G. (1991). Cognitive performance effects of low zinc (Zn) intakes in healthy adult men. FASEB J.5, A938, abstract.Google Scholar
  47. Penland, J.G. (1999). Behavioral Data and Methodology Issues in Studies of Zinc Nutrition in Humans. FASEB J, in press.Google Scholar
  48. Penland, J.G., Sandstead, H.H., Egger, N.G., Dayal, H.H., Alcock, N.W., Plotkin, R., Rocco, C., and Zavaleta, A. (1999). Zinc, iron and micronutrient supplementation effects on cognitive and psychomotor function of Mexican-American school children. FASEB J.13, A921, abstract 683.4.Google Scholar
  49. Perez-Clausell, J. and Danscher, G. (1986). Release of zinc sulphide accumulations into synaptic clefts after in vivo injection of sodium sulphide. Brain. Res.362, 358–361.PubMedGoogle Scholar
  50. Peters, S., Koh, J., and Choi, D.W. (1987). Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science236, 589–593.PubMedGoogle Scholar
  51. Sandstead, H.H., Fosmire, G.J., McKenzie, J.M., and Halas, E.S. (1975). Zinc deficiency and brain development in the rat. Fed Proc.34, 86–88.PubMedGoogle Scholar
  52. Sandstead, H.H., Penland, J.G., Alcock, N.W., Dayal, H.H., Chen, X.C., Li, J.S., Zhao, F., and Yang, J.J. (1998). Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am. J. Clin. Nutr.68, 470S–475S.PubMedGoogle Scholar
  53. Swenerton, H., Shrader, R., and Hurley, L.S. (1969). Zinc-deficient embryos: reduced thymidine incorporation. Science166, 1014–1045.PubMedGoogle Scholar
  54. Thatcher, R.W., McAlaster, R., Lester, M.L., and Cantor, D.S. (1984). Comparisons among EEG, hair minerals and diet predictions of reading performance in children. Ann. NY Acad. Sci.433, 87–96.PubMedGoogle Scholar
  55. Tonder, N., Johansen, F.F., Frederickson, C.J., Zimmer, J, and Diemer, N.H. (1990). Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett.109, 247–252.PubMedGoogle Scholar
  56. Tully, C.L., Snowdon, D.A., and Markesbery, W.R. (1995). Serum zinc, senile plaques, and neurofibrillary tangles: findings from the Nun Study. Neuroreport. 6, 2105–2108.PubMedGoogle Scholar
  57. Warkany, J. and Petering, H.G. (1972). Congenital malformations of the central nervous system in rats produced by maternal zinc deficiency. Teratology5, 319–334.PubMedGoogle Scholar
  58. Yamada, Y., Merrill, A.H., Jr., and McCormick, D.B. (1990). Probable reaction mechanisms of flavokinase and FAD synthetase from rat liver. Arch. Biochem. Biophys.278, 125–130.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Harold H. Sandstead
    • 1
  • Christopher J. Frederickson
    • 2
  • James G. Penland
    • 3
  1. 1.Division of Human Nutrition Department of Preventive Medicine and Community Healththe University of Texas Medical BranchGalvestonUSA
  2. 2.Center for Bioengineering Department of Neurosciencethe University of Texas Medical BranchGalvestonUSA
  3. 3.Grand Forks Human Nutrition Research CenterUS Department of Agriculture Agricultural Research ServiceGrand ForksUSA

Personalised recommendations