Regulation and Function of the Copper Ion Transport Machinery

  • Jaekwon Lee
  • Dennis J. Thiele


Impressive arrays of highly structurally and functionally conserved proteins have dedicated roles in Cu ion transport and distribution. Many questions remain to be answered in the field of Cu ion homeostasis. Currently, it is unclear exactly what mechanisms are used by the plasma membrane Cu transport proteins to safely move Cu ions across biological membranes. Are these proteins functioning alone or in a large metal ion-transporting complex? Further, once Cu is imported, how do Cu chaperones obtain their Cu cargo for delivery to proteins and cellular compartments? These and related questions are of great importance in formulating a comprehensive understanding of the molecular basis for Cu ion transport and distribution in all cells.


Iron Uptake Yeast Gene Wilson Disease Copper Uptake Copper Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaravadi, R., Glerum, D.M., and Tzagoloff, A., 1997, Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment, Hum. Genet. 99:329–333.CrossRefGoogle Scholar
  2. Askwith, C., Eide, D., Ho, A.V., Bernard, P.S., Li, L., Davis-Kaplan, S., Sipe, D.M., and Kaplan, J., 1994, The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake, Cell 76:403–410.CrossRefGoogle Scholar
  3. Bull, P.C. and Cox, D.W., 1994, Wilson disease and Menkes disease: new handles on heavy-metal transport, Trends in Genet. 10:246–252.CrossRefGoogle Scholar
  4. Casareno, R.L.B., Waggoner, D., and Gitlin, J.D., 1998, The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase, J. Biol. Chem. 273:23625–23628.CrossRefGoogle Scholar
  5. Culotta, V.C., Klomp, L.W.J., Strain, J., Casareno, L.B., Krems, B., and Giltin, J.D., 1997, The Copper chaperone for superoxide dismutase, J. Biol. Chem. 272:23469–23472.CrossRefGoogle Scholar
  6. Dancis, A., Haile, D., Yuan, D.S., and Klausner, R.D., 1994a, The Saccharomyces cerevisiae copper transport protein (Ctrlp). Biochemical characterization, regulation by copper, and physiologic role in copper uptake, J. Biol. Chem. 269:25660–25667.PubMedGoogle Scholar
  7. Dancis, A., Yuan, D.S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J., and Klausner, R.D., 1994b, Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport, Cell 76:393–402.CrossRefGoogle Scholar
  8. DiDonato, M. and Sarkar, B., 1997, Copper transport and its alterations in Menkes and Wilson diseases, Biochem. Biophy. Acta 1360:3–16.Google Scholar
  9. Georgatsou, E. and Alexandraki, D., 1994, Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae, Mol. Cell. Biol. 14:3065–3073.CrossRefGoogle Scholar
  10. Georgatsou, E., Mavrogiannis, L.A., Fragiadakis, G.S., and Alexandraki, D., 1997, The yeast Frelp/Fre2p cupric reductase facilitate copper uptake and are regulated by the copper-modulated Macl activator, J. Biol. Chem. 272, 13786–13792.CrossRefGoogle Scholar
  11. Glerum, D.M., Shtanko, A., and Tzagoloff, A., 1996, Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase, J. Biol. Chem. 271:14504–14509.CrossRefGoogle Scholar
  12. Halliwell, B. and Gutteridge, J.M.C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14.CrossRefGoogle Scholar
  13. Hassett, R. and Kosman, D.J., 1995, Evidence of Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae, J. Biol. Chem. 270:128–134.CrossRefGoogle Scholar
  14. Jensen, L.T. and Winge, D.R., 1998, Identification of a copper-induced intramolecular interaction in the transcription factor Macl from Saccharomyces cerevisiae, EMBO 17:5400–5408.CrossRefGoogle Scholar
  15. Klomp, L.W.J., Lin, S.-J., Yuan, D.S., Klausner, R.D., Culotta, V.C., and Gitlin, J.D., 1997, Idnetification and functional expression of HAH1, a novel human gene involved in copper homeostasis, J. Biol. Chem. 272:9221–9226.CrossRefGoogle Scholar
  16. Knight, S.A.B., Labbe, S., Kwon, L.F., Kosman, D.J., and Thiele, D.J., 1996, A widespread transposable element masks expression of a yeast copper transport gene, Genes & Dev. 10:1917–1929.CrossRefGoogle Scholar
  17. Labbe, S., Zhu, Z., and Thiele, D.J., 1997, Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transcription pathway, J. Biol. Chem. 272:15951–15958.CrossRefGoogle Scholar
  18. Lin, S.-J. and Culotta, V.C., 1995, The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity, Proc. Natl. Acad. Sci. USA 92:3784–3788.CrossRefGoogle Scholar
  19. Lin, C.M. and Kosman, D.J., 1990, Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism, J. Biol. Chem. 265:9194–9200.PubMedGoogle Scholar
  20. Lin, S.-J., Pufahl, R.A., Dancis, A., O’Halloran, TV., and Culotta, V.C., 1997, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport, J. Biol. Chem. 272:9215–9220.CrossRefGoogle Scholar
  21. Linder, M.C., 1991, Biochemistry of copper, Plenum Press, New York.CrossRefGoogle Scholar
  22. Martins, L.J., Jensen, L.T, Simons, J.R., Keller, G.L., and Winge, D.R., 1998, Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae, J. Biol. Chem. 273:23716–23721.CrossRefGoogle Scholar
  23. Pena, M.M.O., Koch, K.A., and Thiele, D.J., 1998, Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae, Mol. Cell Biol. 18:2514–2523.CrossRefGoogle Scholar
  24. Pufahl, R.A., Singer, C.P., Peariso, K.L., Lin, S.-J., Schmidt, P.J., Fahrni, C.J., Culotta, V.C., Penner-Hahn, J.E., and O’Halloran, T.V., 1997, Metal ion chaperone function of the soluble Cu(I) receptor Atx1, Science 278:853–856.CrossRefGoogle Scholar
  25. Stearman, R., Yuan, D.S., Yamaguchi-Iwai, Y., Klausner, R.D., and Dancis, A., 1996, A permease-oxidase complex involved in high-affinity iron uptake in yeast, Science 271:1552–1557.CrossRefGoogle Scholar
  26. Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D., Klausner, R.D., and Dancis, A., 1997, Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1, J. Biol. Chem. 272:17711–17718.CrossRefGoogle Scholar
  27. Yuan, D.S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R.D., 1995, The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake, Proc. Natl. Acad. Sci. USA 92:2632–2636.CrossRefGoogle Scholar
  28. Zhou, B. and Gitschier, J., 1997, hCTRl: a human gene for copper uptake identified by complementation in yeast, Proc. Natl. Acad. Sci. USA 94:7481–7486.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jaekwon Lee
    • 1
  • Dennis J. Thiele
    • 1
  1. 1.Department of Biological ChemistryThe University of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations