Neurochemical Alteration Following Perinatal Copper Deficiency in Rodents

  • Joseph R. Prohaska


Copper Deficiency Copper Status Dietary Copper Deficiency Auditory Startle Response Brain Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennetts, H.W. and Chapman, F.E., 1937, Copper deficiency in sheep in Western Australia: A preliminary account of the etiology of enzootic ataxia of lambs and an anemia of ewes, Aust. Vet. J. 13:138–149.CrossRefGoogle Scholar
  2. Carlton, W.W. and Kelly, W.A., 1969, Neural lesions of the offspring of female rats fed a copper-deficient diet, J. Nutr. 97:42–52.CrossRefGoogle Scholar
  3. Danks, D.M., Campbell, P.E., Stevens, B.J., Mayne, V., and Cartwright, E., 1972, Menkes’ kinky hair syndrome, Pediatrics 50:188–201.PubMedGoogle Scholar
  4. DiPaolo, R.V., Kanfer, J.N., and Newberne, P.M., 1974, Copper deficiency and the central nervous system. Myelination in the rat: Morphological and biochemical studies, J. Neuropathol. Exper. Neurol. 33:226–236.CrossRefGoogle Scholar
  5. Everson, G.J., Shrader, R.E., and Wang, T.-I., 1968, Chemical and morphological changes in the brains of copper-deficient guinea pigs, J. Nutr. 96:115–125.CrossRefGoogle Scholar
  6. Feller, D.J. and O’Dell, B.L., 1980, Dopamine and norepinephrine in discrete areas of the copper-deficient rat brain, J. Neurochem. 34:1259–1263.CrossRefGoogle Scholar
  7. Gary, T. and Robertson, D., 1994, Lessons learned from dopamine (-hydroxylase deficiency in humans, News in Physiological. 9:35–39.CrossRefGoogle Scholar
  8. Gross, A.M. and Prohaska, J.R., 1990, Copper-deficient mice have higher cardiac norepinephrine turnover, J. Nutr. 120:88–96.CrossRefGoogle Scholar
  9. Ho, Y.-S., Gargano, M., Cao, J., Bronson, R.T., Heimler, I., and Hutz, R.J., 1998, Reduced fertility in female mice lacking copper-zinc superoxide dismutase, J. Biol. Chem. 273:7765–7769.CrossRefGoogle Scholar
  10. Hopkins, R.G. and Failla, M.L., 1995, Chronic intake of a marginally low copper diet impairs in vitro activities of lymphocytes and neutrophils from male rats despite minimal impact on conventional indicators of copper status, J. Nutr. 125:2658–2668.Google Scholar
  11. Hunt, C.D. and Idso, J.P., 1995, Moderate copper deprivation during gestation and lactation affects dentate gyrus and hippocampal maturation in immature male rats, J. Nutr. 125:2700–2710.PubMedGoogle Scholar
  12. Hunt, D.M and Johnson, D.R., 1972, Aromatic amino acid metabolism in brindled (Mobr) and viable-brindled (Movbr), two alleles at the mottled locus in the mouse, Biochem. Genet. 6:31–40.CrossRefGoogle Scholar
  13. Hunt, D.M., 1974, Primary defect in copper transport underlies mottled mutants in the mouse, Nature 249:852–854.CrossRefGoogle Scholar
  14. Kubat, W.D. and Prohaska, J.R., 1996, Copper status and ascorbic acid concentrations in rats, Nutr. Res. 16:237–243.CrossRefGoogle Scholar
  15. Mains, R.E., Myers, A.C., and Eipper, B.A., 1985, Hormonal, drug, and dietary factors affecting peptidyl glycine (-amidating monooxygenase activity in various tissues of the adult male rat, Endocrinology 116:2505–2515.CrossRefGoogle Scholar
  16. Morita, H., Ikeda, S., Yamamoto, K., Morita, S., Yoshida, K., Nomoto, S., and Kato Yanagisawa, N., 1995, Hereditary ceruloplasmin deficiency with hemosiderosis: A clinicopathological study of a Japanese family, Ann. Neurol. 37:646–656.CrossRefGoogle Scholar
  17. O’Dell, B.L. and Prohaska, JR., 1983, Biochemical aspects of copper deficiency in the nervous system, in: Neurobiology of the Trace Elements, Volume 1 (I.E. Dreosti, and R.M. Smith, eds.), Humana Press, Clifton, pp. 41–81.CrossRefGoogle Scholar
  18. Phillips, M., Camakaris, J., and Danks, D.M., 1986, Comparisons of copper deficiency states in the murine mutants blotchy and brindled, Biochem. J. 238:177–183.CrossRefGoogle Scholar
  19. Prohaska, J.R., 1981, Comparison between dietary and genetic copper deficiency in mice: Copper-dependent anemia, Nutr. Res. 1:159–167.CrossRefGoogle Scholar
  20. Prohaska, J.R., 1981b, Changes in brain enzymes accompanying deficiencies of the trace elements, copper, selenium, or zinc, in: Trace Element Metabolism in Man and Animals (TEMA-4), (J. McC. Howell, J.M. Gawthorne, and C.L. White, eds.), pp. 275–282, Australian Academy of Science, Canberra.CrossRefGoogle Scholar
  21. Prohaska, J.R., 1983, Comparison of copper metabolism between brindled mice and dietary copper-deficient mice using 67Cu, J. Nutr. 113:1212–1220.CrossRefGoogle Scholar
  22. Prohaska, J.R., 1987, Function, of trace elements in brain metabolism, Physiol. Rev. 67:858–901.CrossRefGoogle Scholar
  23. Prohaska, J.R., 1991, Changes in Cu, Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats, J. Nutr. 121:355–363.CrossRefGoogle Scholar
  24. Prohaska, J.R., 1997, Persistent neurochemical and behavioral abnormalities in adult rats following recovery from perinatal copper deficiency, in: Trace Elements in Man and Animals-9: Proceedings of the Ninth International Symposium on Trace Elements in Man and Animals, (P.W.F. Fischer, M.R. LíAbb”, K.A. Cockell, and R.S. Gibson, eds.), pp. 208–212, NRC Research Press, Ottawa.Google Scholar
  25. Prohaska, J.R. and Bailey, W.R., 1993a, Copper deficiency during neonatal development alters mouse brain catecholamine levels, Nutr. Res. 13:331–338.CrossRefGoogle Scholar
  26. Prohaska, J.R. and Bailey, W.R., 1993b, Persistent regional changes in brain copper, cuproenzymes and catecholamines following perinatal copper deficiency in mice, J. Nutr. 123:1226–1234.CrossRefGoogle Scholar
  27. Prohaska, J.R. and Bailey, W.R., 1994, Regional specificity in alterations of rat brain copper and catecholamines following perinatal copper deficiency, J. Neurochem. 63:1551–1557.CrossRefGoogle Scholar
  28. Prohaska, J.R. and Bailey, W.R., 1995a, Persistent neurochemical changes following perinatal copper deficiency in rats, J. Nutr. Biochem. 6:275–280.CrossRefGoogle Scholar
  29. Prohaska, J.R. and Bailey, W.R., 1995b, Alterations of rat brain peptidylglycine (-amidating monooxygenase and other cuproenzyme activities following perinatal copper deficiency, Proc. Soc. Exp. Biol. Med, 210:107–116.CrossRefGoogle Scholar
  30. Prohaska, J.R. and Cox, D.A., 1983, Decreased brain ascorbate levels in copper-deficient mice and in brindled mice, J. Nutr. 113:2623–2629.CrossRefGoogle Scholar
  31. Prohaska, J.R. and Hoffman, R.G., 1996, Auditory startle response is diminished in rats after recovery from perinatal copper deficiency, J. Nutr. 126:618–627.CrossRefGoogle Scholar
  32. Prohaska, J.R. and Smith, T.L., 1982, Effect of dietary or genetic copper deficiency on brain catecholamines, trace metals and enzymes in mice and rats, J. Nutr. 112:1706–1717.CrossRefGoogle Scholar
  33. Prohaska, J.R. and Wells, W.W., 1974, Copper deficiency in the developing rat brain: A possible model for Menkes’ steely-hair disease, J. Neurochem. 23:91–98.CrossRefGoogle Scholar
  34. Prohaska, J.R. and Wells, W.W., 1975, Copper deficiency in the developing rat brain: Evidence for abnormal mitochondria, J. Neurochem. 25:221–228.CrossRefGoogle Scholar
  35. Prohaska, J.R., Bailey, W.R., Gross, A.M., and Korte, J.J., 1990, Effect of dietary copper deficiency on the distribution of dopamine and norepinephrine in mice and rats, J. Nutr. Biochem. 1:149–154.CrossRefGoogle Scholar
  36. Prohaska, J.R., Bailey, W.R., and Lear, P.M., 1995, Copper deficiency alters rat peptidylglycine (-amidating monooxygenase activity, J. Nutr. 125:1447–1454.PubMedGoogle Scholar
  37. Rusinko, N. and Prohaska, J.R., 1985, Adenine nucleotide and lactate levels in organs from copper-deficient mice and brindled mice, J. Nutr. 115:936–943.CrossRefGoogle Scholar
  38. Sun, S.H.-H. and O’Dell, B.L., 1992b, Low copper status of rats affects polyunsaturated fatty acid composition of brain phospholipids, unrelated to neuropathology, J. Nutr. 122:65–73.CrossRefGoogle Scholar
  39. Thomas, S.A., Matsumoto, A.M., and Palmiter, R.D., Noradrenaline is essential for mouse fetal development, Nature 374:643–646.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Joseph R. Prohaska
    • 1
  1. 1.Department of Biochemistry & Molecular Biology School of MedicineUniversity of Minnesota-DuluthDuluthUSA

Personalised recommendations