Some Functions of the Essential Trace Element, Selenium

  • Thressa C. Stadtman

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsina, B., Serras, F., Baguna, J., and Corominas, M., 1998, patufet, the gene encoding the Drosophila melanogaster homologue of selenophosphate synthetase, is involved in imaginal disc morphogenesis. Mol. Gen Genet 257:113–123.CrossRefGoogle Scholar
  2. Berry, M.J., Banu, L., and Larsen, P.R., 1991, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440.CrossRefGoogle Scholar
  3. Berry, M.J., Banu, L., Harney, J.W., and Larsen, P.R., 1993, Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 12:3315–3322.Google Scholar
  4. Bjornstedt, M., Hamberg, M., Kumar, S., Xue, J., and Holmgren, A., 1995, Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J. Biol. Chem. 270:11761–11764.CrossRefGoogle Scholar
  5. Bock, A., 1999, Biosynthesis of selenoproteins—an overview. BioFactors 9:(in press).Google Scholar
  6. Bock, A. and Stadtman, T.C., 1988, Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. BioFactors 1:245–250.Google Scholar
  7. Chambers, I., Frampton, J., Goldfarb, P., Affara, N. McBain, W, and Harrison, P.R., 1986, The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the “termination” codon, TGA. EMBO J. 5:1221–1227.Google Scholar
  8. Cone, J.E., del Rio, M., Davis, J.N., and Stadtman, T.C., 1976, Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Nat. Acad. Sci. USA. 73:2659–2663.Google Scholar
  9. Dilworth, G.L., 1982, Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys. 219:30–38.CrossRefGoogle Scholar
  10. Ehrenreich, A., Forchhammer, K., Tormay, P., Veprek, B., and Bock, A., 1992, Selenoprotein synthesis in E. coli. Purification and characterization of the enzyme catalyzing selenium activation. Eur. J. Biochem. 206:767–773.CrossRefGoogle Scholar
  11. Flohe, L., Gunzler, W.A., and Schock, H.H., 1973, Glutathione peroxidase: A selenoenzyme. FEBS Lett. 32:132–134.CrossRefGoogle Scholar
  12. Forchhammer, K., Leinfelder, W., Boesmiller, K., Veprek, B., and Bock, A., 1991, Selenocysteine synthase from Escherichia coli. J. Biol. Chem. 266:6318–6323.Google Scholar
  13. Garcia, G.E. and Stadtman, T.C., 1992, Clostridium sticklandii glycine reductase selenoprotein A gene: Cloning, sequencing and expression in Escherichia coli. J. Bacteriol. 174:7080–7089.Google Scholar
  14. Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., and Powis, G., 1995, Cloning and sequencing of human thioredoxin reductase. FEBS Lett. 373:5–9.CrossRefGoogle Scholar
  15. Gladyshev, V.N., Jeang, K.-T., and Stadtman, T.C., 1996, Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Nat. Acad. Sci. USA 93:6146–6151.CrossRefGoogle Scholar
  16. Glass, R.S., Singh, W.P., Jung, W., Veres, Z., Scholz, T.D., and Stadtman, T.C., 1993, Monoselenophosphate: Synthesis, characterization and identity with the prokaryotic biological selenium donor, Compound SePX. Biochemistry 32:12555–12559.CrossRefGoogle Scholar
  17. Gorlatov, S.N. and Stadtman, T.C., 1998, Human thioredoxin reductase from HeLa cells: Selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin. Proc. Nat. Acad Sci. USA 95:8520–8525.CrossRefGoogle Scholar
  18. Graham, A., Jenkens, H.E., Smith, N.H., Mandrand-Berthelot, M.-A., Haddock, B.A., and Boxer, D.H., 1980, The synthesis of formate dehydrogenase and nitrate reductase proteins in various fdh and chl mutants of Escherichia coli. FEMS Microbiol. Lett. 7:145–151.Google Scholar
  19. Guimaraes, M.J., Peterson, D., Vicari, A., Cocks, B.G., Copeland, N.G., Gilbert, D.J., Ferrick, D.A., Kastelein, R.A., Bazan, J.F., and Zlotnik, A., 1996, Identification of a novel selD homolog from eukaryotes, bacteria and archae: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Nat. Acad. Sci USA 93:15086–15091.CrossRefGoogle Scholar
  20. Haddock, B.A. and Mandrand-Berthelot, M.-A., 1982, Escherichia coli formate-to-nitrate respiratory chain: genetic analysis. Biochem. Soc. Trans. 10:478–480.Google Scholar
  21. Heider, J. and Bock, A., 1993, Selenium metabolism in microorganisms. Adv. Microbial Phys. 35:71–109.Google Scholar
  22. Heider, J., Baron, and Bock, A., 1992, Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into a protein. EMBO J. 11:3759–3766.Google Scholar
  23. Hill, K.E., Lloyd, R.S., Yang, J.G., Read, R., and Burk, R.F., 1991, The cDNA for rat selenoprotein P contains 10TGA codons in the open reading frame. J. Biol. Chem. 266:10050–10053.Google Scholar
  24. Jacob, C., Maret, W., and Vallee, B.L., 1999, Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc. Nat. Acad. Sci. USA 96:1910–1914.CrossRefGoogle Scholar
  25. Kaminski, R., Glass, R.S., Schroeder, T.B., Michalski, J., and Skowronska, A., 1997, Monoselenophosphate: Its hydrolysis and its ability to phosphorylate alcohols and amines. Bioorganic Chem. 25:249–259.CrossRefGoogle Scholar
  26. Kim, I.Y., Veres, Z., and Stadtman, T.C., 1992, Escherichia coli mutant SELD enzymes. J. Biol. Chem. 267:10650–19654.Google Scholar
  27. Kim, I.Y., Veres, Z., and Stadtman, T.C., 1993, Biochemicl analysis of Escherichia coli selenophosphate synthesis mutants. J. Biol. Chem. 268:27020–27025.Google Scholar
  28. Lacourciere, G.M. and Stadtman, T.C., 1999, Catalytic properties of selenophosphate synthetases: Comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli. Pro. Nat. Acad. Sci. USA 96:44–48.CrossRefGoogle Scholar
  29. Lee, S.-R., Kim, J.-R., Kwon, K.-S., Yoon, H.W., Levine, R.L., Ginsburg, A., and Rhee, S.G., 1999, Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem. 274:4722–4734.CrossRefGoogle Scholar
  30. Leinfelder, W., Forchhammer, K., Zinoni, F., Sawers, G., Mandrand-Berthelot, M.-A., and Bock, A., 1988a, Escherichia coli genes whose products are involved in selenium metabolism. J. Bact. 170:540–546.Google Scholar
  31. Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., and Bock, A., 1990, In vitro synthesis of selenocysteyl-tRNAuca from seryl-tRNAuca: Involvement and characterization of the selD gene product. Proc. Nat. Acad. Sci. USA 87:543–547.Google Scholar
  32. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.-A., and Bock, A., 1988b, Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331:723–725.CrossRefGoogle Scholar
  33. Liu. S.-Y. and Stadtman, T.C., 1997, Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells. Proc. Nat. Acad. Sci. USA 94:6138–61141.CrossRefGoogle Scholar
  34. Miranda-Vizuete, A., Damdimopoulos, A.E., Pedrajas, J.R., Gustafsson, J.-A., and Spyrou, G., 1999, The human mitochondrial thioredoxin reductase. cDNA cloning, expression and genomic organization. Eur. J. Biochem. 261:405–412.CrossRefGoogle Scholar
  35. Mullins, L.S., Hong, S.-B., Gibson, G.E., Walker, H., Stadtman, T.C., and Raushel, F.M., 1997, Identification of a phosphorylated enzyme intermediate in the catalytic mechanism for selenophosphate synthetase. J. Am. Chem. Soc. 119:6684–6685.CrossRefGoogle Scholar
  36. Patterson, E.L., Milstrey, R., and Stokstad, E.L.R., 1957, Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med. 95:617–620.Google Scholar
  37. Persson, B.C., Bock, A., Jackie, H., and Vorbruggen, G., 1997, SelD Homolog from Drosophila lacking selenide-dependent monoselenophosphate synthetase activity. J. Mol. Biol. 274:174–180.CrossRefGoogle Scholar
  38. Pinsent, J., 1954, The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J. 57:10–16.Google Scholar
  39. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., 1973, Selenium: Biochemical role as a component of glutathione peroxidase. Science 179:588–590.Google Scholar
  40. Schwarz, K. and Foltz, C.M., 1957, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79:3292–3293.CrossRefGoogle Scholar
  41. Stadtman, T.C., 1979, Some selenium-dependent biochemical processes. Advances in Enzymology 48:1–28. Ed. A. Meister, John Wiley & sons, Inc. N.Y.Google Scholar
  42. Stadtman, T.C., 1980a, Biological functions of selenium. Trends Biochem. Sci. (TIBS) 5:203–206.Google Scholar
  43. Stadtman, T.C., 1980b, Selenium-dependent enzymes. Ann. Rev. Biochem. 49:93–110.CrossRefGoogle Scholar
  44. Stadtman, T.C., 1990, Selenium biochemistry. Ann. Rev. Biochem. 59:111–127.CrossRefGoogle Scholar
  45. Stadtman, T.C., 1996, Selenocysteine. Ann. Rev. Biochem. 65:83–100.CrossRefGoogle Scholar
  46. Stadtman, T.C., Davis, J.N., Ching, W.-M., Zinoni, F., and Bock, A., 1991, Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product. BioFactors 3:21–27.Google Scholar
  47. Sunde, R.A. and Evenson, J.K., 1987, Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J. Biol. Chem. 262:933–937.Google Scholar
  48. Tamura, T. and Stadtman, T.C., 1996, A new selenoprotein from human lung adenocarcinoma cells: Purification, properties and thioredoxin reductase activity. Proc. Nat. Acad. Sci USA 93:1006–1011.CrossRefGoogle Scholar
  49. Turner, D.C. and Stadtman, T.C., 1973, Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys. 154:366–381.CrossRefGoogle Scholar
  50. Ursini, F., Maiorino, M., Brigelius-Flohe, R., Aumann, K.D., Roveri, A., Schomburg, D., and Flohe, L., 1995, The diversity of glutathione peroxidases. Methods Enzymol. 252:38–53.CrossRefGoogle Scholar
  51. Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D., 1993, Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem. 268:17103–17107.Google Scholar
  52. Vendeland, S.C., Beilstein, M.A., Yeh, J.-Y, Ream, W., and Whanger, P.D., 1995, Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Nat. Acad. Sci. USA 92:8749–8753.Google Scholar
  53. Veres, Z., Kim, I.Y., Scholz, T.D., and Stadtman, T.C., 1994, Selenophosphate synthetase: enzyme properties and catalytic reaction. J. Biol. Chem. 269:10597–10603.Google Scholar
  54. Veres, Z. and Stadtman, T.C., 1994, A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in t-RNAs with selenium. Proc. Nat. Acad. Sci. USA 91:8092–8096.Google Scholar
  55. Veres, Z., Tsai, L., Scholz, T.D., Politino, M., Balaban, R.S., and Stadtman, T.C., 1992, Synthesis of 5-methylaminomethyl-2-selenouiridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Nat. Acad. Sci. USA 89:2975–2979.Google Scholar
  56. Walker, H., Ferretti, J.A., and Stadtman, T.C., 1998, Isotope exchangestudies on the Escherichia coli selenophosphate synthetase mechanism. Proc. Nat. Acad. Sci. USA 95:2180–2185.CrossRefGoogle Scholar
  57. Wittwer, A.J. and Stadtman, T.C., 1986, Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli. Arch. Biochem. Biophys. 248:540–550.CrossRefGoogle Scholar
  58. Yamazaki, S., 1982, A selenium-containing hydrogenase from Methanococcus vannielii. J. Biol. Chem. 257:7926–7929.Google Scholar
  59. Zinoni, F., Birkman, A., Stadtman, T.C., and Bock, A., 1986, Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Nat. Acad. Sci. USA 83:4650–4654.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Thressa C. Stadtman
    • 1
  1. 1.Laboratory of Biochemistry National Heart, Lung and Blood InstituteNational Institutes of HealthBethesda

Personalised recommendations