Advertisement

Low-Voltage Analog Techniques

  • Mikael Gustavsson
  • J. Jacob Wikner
  • Nianxiong Nick Tan
Chapter
Part of the The International Series in Engineering and Computer Science book series (SECS, volume 543)

Keywords

Supply Voltage Settling Time Analog Circuit Phase Margin Compensation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. S. Yang Microelectronic Devices, McGraw-Hill, 1988.Google Scholar
  2. [2]
    D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.Google Scholar
  3. [3]
    S. Wong and C. A. T. Salama, “Impact of Scaling on MOS Analogt Performance”, IEEE J. of Solid-State Circuits, vol. SC-18, no. 1, pp. 106–14, Feb. 1983.CrossRefGoogle Scholar
  4. [4]
    J. M. Rabaey, Digital Integrated Circuits, Prentice Hall Electronics and VLSI Series, 1996.Google Scholar
  5. [5]
    P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Holt, Rinehart and Winston, Inc. 1987.Google Scholar
  6. [6]
    K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems, McGraw-Hill, Inc. 1994.Google Scholar
  7. [7]
    B. K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers”, IEEE J. of Solid-State Circuits, vol. SC-18, No. 6, pp. 629–33, Dec. 1983.CrossRefGoogle Scholar
  8. [8]
    R. G. H. Eschauzier and J. H. Huijsing, Frequency Compensation Techniques for Low-Power Operational Amplifiers, Kluwer Academic publishers, 1995.Google Scholar
  9. [9]
    G. S. Østrem, High-Speed Analog-to-Digital Converters for Mixed Signal ASIC Applications, Ph.D. Dissertation, FYS.EL.-rapport 1996:38, Norwegian University of Science and Technology, 1996.Google Scholar
  10. [10]
    D. Senderowicz, S. F. Dreyer, J. H. Huggins, C. F. Rahim and C. A. Laber, “A Family of Defferential NMOS Analog Circuits for PCM Codec Filter Chip”, IEEE J. of Solid-State Circuits, Vol. SC-17, No. 6, pp. 1014–23, Dec. 1982.CrossRefGoogle Scholar
  11. [11]
    Y. Nakagome, et. al., “Experimental 1.5-V 64-Mb DRAM”, IEEE J. of Solid-State Circuits, vol. 26, pp. 465–472, April 1991.CrossRefGoogle Scholar
  12. [12]
    N. Tan, “Design and Implementation of Digital-to-Analog Converters for Telecommunication”, ERICSSON Report, KI/EKA/MERC-96 078, 1996-12-05Google Scholar
  13. [13]
    N. Tan, “A 1.5-V 3-mW 10-b 50-Ms/s CMOS DAC with Low Distortion and Low Intermodulation in Standard Digital CMOS Process”, Proc. IEEE Custom Integrated Circuit Conference (CICC), California, USA, May, 1997.Google Scholar
  14. [14]
    A.M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter”, IEEE J. of Solid-State Circuits, vol. 4, No. 5, pp. 599–606, May 1999.CrossRefGoogle Scholar
  15. [15]
    N. Tan: Switched-Current Design and Implementation of Oversampling A/D Converters, Kluwer Academic Publishers 1997.Google Scholar
  16. [16]
    J. Crols and M. Steyaert, “Switched-Opamp: An Approach to Realize Full CMOS Switched-Capacitor Circuits ar very Low Power Supply Voltages”, IEEEJ. of Solid-State Circuits, vol. 29, no. 8, pp. 936–942, Aug. 1994.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mikael Gustavsson
  • J. Jacob Wikner
  • Nianxiong Nick Tan

There are no affiliations available

Personalised recommendations