Cryocoolers 11 pp 577-586 | Cite as

Closed-Cycle Cooling of Infrared Detectors to 0.25 K for the Polatron

  • R. S. Bhatia
  • J. J. Bock
  • V. V. Hristov
  • W. C. Jones
  • A. E. Lange
  • J. Leong
  • P. V. Mason
  • B. J. Philhour
  • G. Sirbi
  • S. E. Church
  • B. G. Keating
  • J. Glenn
  • S. T. Chase
  • P. A. R. Ade
  • C. V. Haynes

Abstract

We have integrated a 4 K mechanical cryocooler with a three stage 4 He/ 3 He/ 3 He sorption refrigerator to achieve cooling down to 0.25 K. The cryocooler consists of two Gifford-MacMahon stages which cool 4He to below its inversion temperature for use in a Joule-Thomson expansion stage. This in turn provides cooling below the critical temperature of 4He. The sorption refrigerator is specified to achieve a heatlift of 3 microwatts at 0.25 K for 12 hours. This cryogenic system will be used for cooling of the bolometric detectors and optics in the Polatron, a ground-based receiver for measurement of the polarisation of the cosmic microwave background radiation at a frequency of 90 GHz. Cooling of sensitive detectors by mechanical cryocoolers can lead to sensitivity degradation due to a combination of microphonic pickup, electromagnetic interference and thermal dissipative heating. We describe the design features incorporated at system level to mitigate these effects. The Polatron also serves as a testbed for technologies to be used on the High Frequency Instrument on the ESA/NASA Planck satellite to measure the temperature anisotropies and polarisation of the cosmic microwave background radiation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Bernardis, P. et al., ‘A Flat Universe from High-resolution Maps of the Cosmic Microwave Background Radiation’ Nature 404 (27 April 2000) 955–959ADSCrossRefGoogle Scholar
  2. 2.
    Hu, W. and White, M., ‘A CMB Polarisation Primer’, New Astronomy 2 (1997) 323–344CrossRefADSGoogle Scholar
  3. 3.
    Lee, C., Ade, P.A.R. and Haynes, C.V., ‘Self Supporting Filters for Compact Focal Plane Designs’, Proceedings of the 30th ESLAB Symposium,’ submillimetre and Far-Infrared Space Instrumentation’, 25–27th September 1996, Noordwijk, The Netherlands, ESA SP-388 (1996) 81–83Google Scholar
  4. 4.
    Church, S.E., Philhour, B.J., Lange, A.E., Ade, P.A.R., Maffei, B., Nartallo-Garcia, R. and Dragovan, M., ‘A Compact High-efficiency Feed Structure for Cosmic Microwave Background Astronomy as Millimeter Wavelengths’, Proceedings of the 30th ESLAB Symposium,’ submillimetre and Far-Infrared Space Instrumentation’, 25–27th September 1996, Noordwijk, The Netherlands, ESA SP-388 (1996) 77–80Google Scholar
  5. 5.
    Bhatia, R.S., Bock, J.J., Ade, P.A.R., Benoît, A., Bradshaw, T.W., Crill, B.P., Griffin, M.J., Hepburn, I.D., Hristov, V.V., Lange, A. E., Mason, P.V., Murray, A.G., Orlowska, A.H. and Turner, A.D., ‘The Susceptibility of Incoherent Detector Systems to Cryocooler Microphonics’, Cryogenics 398 (1999) 701–715ADSCrossRefGoogle Scholar
  6. 6.
    Bock, J. J., Mauskopf, P. D. and Lange, A. ‘Silicon Nitride Micro-mesh Bolometers’, Proceedings of the 30th ESLAB Symposium,’ submillimetre and Far-Infrared Space Instrumentation’, 25–27th September 1996, Noordwijk, The Netherlands, ESA SP-388 (1996) 119–122Google Scholar
  7. 7.
    Rieke, F.M., Lange, A.E., Beeman, J.W. and Haller, E.E. ‘An AC Bridge Readout for Bolometric Detectors’ IEEE Transactions on Nuclear Science, 361 (February 1989) 946–949ADSCrossRefGoogle Scholar
  8. 8.
    NJ450 Process JFET, InterFET Corporation, 1000 N. Shiloh Rd., Garland, Texas 75042, USAGoogle Scholar
  9. 9.
    Low, F.J., ‘Application of JFETs to Low Background Focal Planes in Space Infrared Astronomy — Scientific/Military Thrusts and Instrumentation’, Proc. SPIE 280 (1981) 56–60ADSGoogle Scholar
  10. 10.
    Neutron transmutation doped germanium thermistor, J.W. Beeman, M/S 2-200, Lawrence-Berkeley national Laboratory, Berkeley, CA 94720, USAGoogle Scholar
  11. 11.
    Longsworth, R.C., ‘4 K Gifford McMahon/Joule-Thomson Cycle Refrigerators’, Cryogenic Engineering Conference, June 14—18 (1987)Google Scholar
  12. 12.
    Plambeck, R.L., ‘Improved Seal for a 4 K Gifford-McMahon Cryocooler’, Proceedings of the 8th International Cryocooler Conference, Vail, Colorado, 28–30 June 1994, 795–801 Ed. R. G. Ross, Jr., Plenum Press, New York (1995)Google Scholar
  13. 13.
    Duband, L., Alsop, D., Lange, A. and Kittel, P., ‘A Rocket-borne 3He Refrigerator’, Advances in Cryogenic Engineering 35B (1989) 1447–1456Google Scholar
  14. 14.
    Model GR-200 Series GRT Sensor, Lake Shore Cryotronics, Inc., Westerville, Ohio 43081-2399, USAGoogle Scholar
  15. 15.
    AVS-47 AC Resistance Bridge, RV-Elektroniikka Oy Picowatt, Vantaa, Finland. Distributed by Oxford Instruments Ltd., Witney, Oxfordshire, UKGoogle Scholar
  16. 16.
    Model DT470 Series Diode Sensor, Lake Shore Cryotronics, Inc., Westerville, Ohio 43081-2399, USAGoogle Scholar
  17. 17.
    Frank, D.J. and Nast, T.C., ‘Getter-activated Cryogenic Thermal Switch’, Advances in Cryogenic Engineering 31 (1986) 933Google Scholar
  18. 18.
    Freund, M. M., Duband, L., Lange, A. E., Matsumoto, T., Murakami, H., Hirao, T. and Sato, S., ‘Design and Flight Performance of a Spaceborne 3He Refrigerator for the Infrared Telescope in Space’, Cryogenics 384 (1998) 435–443CrossRefGoogle Scholar
  19. 19.
    Emerson & Cuming, Inc., AN-72, Woburn, MA 01888, USAGoogle Scholar
  20. 20.
    National Instruments Corporation, 11500 N. Mopac Expressway Austin, TX 78759-3504, USAGoogle Scholar
  21. 21.
    Freund, M. M., Hirao, T., Hristov, V., Chegwidden, S., Matsumoto, T. and Lange, A. E., ‘Compact Low-pass Electrical Filters for Cryogenic Detectors’, Review of Scientific Instruments 663 (March 1995) 2638–2640ADSCrossRefGoogle Scholar
  22. 22.
    VFM41R01C222N16-27surface mount EMI chip filter, Murata CorporationGoogle Scholar
  23. 23.
    H20E Silver Epoxy, Epotek, 14 Fortune Drive, Billerica, MA 01821-3972, USAGoogle Scholar
  24. 24.
    HP 8350B (with 0.01-20 GHz HP 83592B), Hewlett-Packard, 3000 Hanover Street, Palo Alto, CA 94304-1185, USAGoogle Scholar
  25. 25.
    HP 8563A Spectrum Analyser, Hewlett-Packard, 3000 Hanover Street, Palo Alto, CA 94304-1185, USAGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R. S. Bhatia
    • 1
  • J. J. Bock
    • 1
  • V. V. Hristov
    • 1
  • W. C. Jones
    • 1
  • A. E. Lange
    • 1
  • J. Leong
    • 1
  • P. V. Mason
    • 1
  • B. J. Philhour
    • 1
  • G. Sirbi
    • 1
  • S. E. Church
    • 2
  • B. G. Keating
    • 2
  • J. Glenn
    • 3
  • S. T. Chase
    • 4
  • P. A. R. Ade
    • 5
  • C. V. Haynes
    • 5
  1. 1.MS 59-33California Institute of TechnologyPasadenaUSA
  2. 2.Dept. of PhysicsStanford UniversityStanfordUSA
  3. 3.CASA CB-389University of ColoradoBoulderUSA
  4. 4.Chase Research Ltd.SheffieldUK
  5. 5.Astrophysics LaboratoryQMW CollegeLondonUK

Personalised recommendations