Advertisement

“2+1” Pulse Sequence as Apllied for Distance and Spatial Distribution Measurements of Paramagnetic Centers

  • A. Raitsimring
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

Applications of one of the varieties of electron spin-echo method, the “2+1” pulse sequence used for the measurement of distances in radical pairs with fixed and distributed distances, and for the determination of the parameters of spatial distribution in more complicated cases (fractals, clusters, non-random distributions) are discussed. Special attention is given to features of the “2+1” technique such as suppression of dipolar interactions of randomly distributed spins, which allows the selection of a dipolar interaction between radical labels in proteins, even if protein molecules aggregate. Experimental conditions that allow the separation of nuclear modulation from electron dipolar related modulation, or minimize the appearance of ESEEM in a “2+1” experiment are also discussed.

Keywords

Pulse Sequence Dipolar Interaction Paramagnetic Center Pulse Parameter Nitroxide Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. The principles of nuclear magnetism, (1961) Clarendon: Oxford, pp.126–128.Google Scholar
  2. Astashkin, AV., Kaders, Y. and Kawamori, A. (1994) Distance between tyrosines Z+ and D+ in plant photosystem II as determined by pulsed EPR, Biochim. Biophys. Acta, 1187, 89.CrossRefGoogle Scholar
  3. Astashkin, A.V., Hara, H. and Kawamori, A. (1998) The Pulsed electron-electron double resonance and “2+1” electron spin echo study of the oriented oxygen-evolving and Mndepleted pre parafions of photosystem II, J.Chem.Phys., 108, 3805.CrossRefGoogle Scholar
  4. Bloom, A. (1955) Nuclear induction in inhomogenious fields. Phys.Rev., 98, 1105.CrossRefGoogle Scholar
  5. Borbat, P. and Raitsimring, A. (1995) “1+2” pulse train -a new variety of pulse adjustable ESEEM spectroscopy. J. Magn. Res., A114, 261.CrossRefGoogle Scholar
  6. Bartat, PP., Crepeau, R.H. and Freed, J.H. (1997) Multifrequency two-dimensional Fourier transform ESR An X/Ku-band spectrometer. J. Magn. Reson., 127, 155.CrossRefGoogle Scholar
  7. Borba, P.P. and Freed, J.H. Double Quantum ESR and Distance Measurements. This book, Chapter 9.Google Scholar
  8. Borbat P.P. and Freed J.H. (1999) Multiquantum ESR and distance measurements. Chem. Phys.Lett., 313, 145.CrossRefGoogle Scholar
  9. Carrington, A. and McLachlan, A.D. (1967) Intröduction to Magnetic Resonance. Harper and Row, p. 31.Google Scholar
  10. Dzuba, S.A., Raitsimring, A.M., and Tsvetkov, Yu.D. (1980) ESE studies of the phase relaxation kinetics in system containing two types of spins. J. Magn. Res., 40, 83.Google Scholar
  11. Ichiicawa, T., Raitsimring, A.M. and Kurshev, V.V. (1991) The spatial distribution of radicals in gamma-irradiated alcohols. J. Phys. Chem., 95, 3565.Google Scholar
  12. Klafler, J., and Blumen, A. (1984) Fractal behavior in trapping and reactions. J. Chem. Phys., 80, 875.CrossRefGoogle Scholar
  13. Klauder, J., and Anderson, P. (1962) Spectral diffusion decay in spin resonance experiments. Phys. Rev., 125, 912.CrossRefGoogle Scholar
  14. Kurshev, V.V., Raitsimring, AM., and Salikhov, KM. (1988) Angular dependence of the dipolar broadening of the ESR line of the single crystal containing paramagnetic centers with an anisotropic g-tensor: Er3 in CaWO,. Sov. Phys. Solid State, 30, 239.Google Scholar
  15. Kurshev, V.V., Astashkin, A.A., and Raitsimring, A.M. (1988) Modulation effects in a “2+1” electron spin echo pulse sequence. J. Struct. Chem., 29, 62. (translation of Dnwnal Strukturnoi Khimii,29, 73, (1988)).Google Scholar
  16. Kurshev, V.V., Raitsimring, A.M, and Tsvetkov, Yu.D. (1989) Selection of the dipolar interaction by the “2+1” pulse train. J. Magn. Reson. 81, 441.Google Scholar
  17. Kutsovscii, Ya.E., Kurshev, V.V., Raitsimring, A., Aristov, Yu.L, and Paturon, V.M. (1991) Fractal nature of the surface of highly dispersed MgO using electron spin echo. Doklady Physical Chemistry (A translation of the physical chemistry section of Dok/adyAkademii Nuuk USSR), 316, 133.Google Scholar
  18. Landau, L.D., and Livshitz, E.M. (1989) Quantum Mechanics, III. Nauka, Moskva p. 231.Google Scholar
  19. Levi, Z., Raitsimring, A.M., and Goldfarb, D. (1991) ESR and electron spin echo study of MnAWPO5 catalyst. J. Phys.Chem., 95, 7830.CrossRefGoogle Scholar
  20. Mandelbrot, B. (1982) The Fractal Geometry of the Nature. Freeman, San Francisco, ch. 3.Google Scholar
  21. Milov, A.D., Salikhov, K.M., and Schirov, M.D. (1981) Application of double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sov. Phys. Solid State, 23, 565.Google Scholar
  22. Milov, A.D., Mariasov, A.G., and Tsvetkov, Yu.D. (1998) Pulsed electron double resonance (PELDOR) and its application in free radical research. Appl. Magn. Res., 15, 107.CrossRefGoogle Scholar
  23. Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess H.W. (2000) Dead-Time free measurement of dipole-dipole interactions between electron spins. J.Magn.Res., 142, 331.CrossRefGoogle Scholar
  24. Pfeifer, P. and Avnir, D. (1983) Chemistry in non-integer dimensions between two-and three. I. Fractal theory of heterogeneous surfaces. J.Chem.Phys., 79, 3558.CrossRefGoogle Scholar
  25. Popov, V.I, Raitsimring, A.M., Salikhov, K.M., and Tsvetkov, Yu.D. (1978) Electron spin echo investigation of mutual flip-flop electron spin reversals involving forbidden transitions. Sov. Phys. Solid State, 20, 985.Google Scholar
  26. Raitsimring, A., Salikhov, K.M., Umanskii, B.A., and Tsvetkov, Yu.D. (1974) Instantaneous diffusion in the electron spin echo of paramagnetic centers stabilized in solid host. Sov. Phys. Solid State 16, 492.Google Scholar
  27. Raitsimring, A.M., Salikhov, K.M., Bychkov, S.F., and Tsvetkov, Yu.D. (1975) Spin and spectral diffusion at 41.K due to dipole-dipole interaction between paramagnetic centers. Sov. Phys. Solid State, 17, 303.Google Scholar
  28. Raitsimring, A.M., Samoilova, R.I., and Tsvetkov Yu.D. (1980) The structure of the radical track in the methanol irradiated by T-beta particles. Radiat.Phys.Chem., 15, 553.Google Scholar
  29. Raitsimring, A.M., and Salikhov, K.M. (1985) ESE method as used to analyze the spatial distribution of the paramagnetic centers. Bull. Magn. Res., 7, 184.Google Scholar
  30. Raitsimring, A., Peisach, J., Lee, H.C. and Chen, X. (1992) Measurement of distance distribution between spin labels in spin-labelled hemoglobin using an electron spin echo method. J.Phys.Chem., 96, 3526.CrossRefGoogle Scholar
  31. Raitsimring, A., Crepeau, D.H., and Freed,J.H. (1995) Nuclear Modulation Effects in “2+1” electron spin echo correlation spectroscopy. J.Chem.Phys., 102, 8746.CrossRefGoogle Scholar
  32. Raitsimring, A., and Borbat, P. (1996) Electron Spin Echo Modulation for “1+2” pulse train in a weak interaction limits. Chem.Phys.Let., 262, 8.CrossRefGoogle Scholar
  33. Salikhov, KM, Yudanov, V.F., Raitsimring, A.M., Zhidomirov, G.M., and Tsvetkov, Yu.D. (1969) Modulation Phenomena in Electron Spin Echo. In: Colloque AMPERE XV, Amsterdam, North-Holland, p. 278–284.Google Scholar
  34. Salikhov, K.M., Raitsimring, A.M., and Dzuba, S.A. (1981) The theory of the ESE signal decay resulting from dipole-dipole interaction between paramagnetic centers in solids. J. Magn. Res., 42, 255.Google Scholar
  35. Slichter, C.P. Principles of Magnetic Resonance. (1996) Springer -Verlag New-York-BerlinHeidelberg, 3-d edition, ch. 5.Google Scholar
  36. Tregub, V.V. and Raitsimring, A.M. (1983) ESE decay of ionic track in beta irradiated frozen solutions of sulfuric acid. Numerical calculations and experiment. Chem.Phys., 77, 123.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • A. Raitsimring
    • 1
  1. 1.Department of ChemistryUniversity of ArizonaTucsonUSA

Personalised recommendations