Spectral Enhancement of Proteins by in vivo Incorporation of Tryptophan Analogues

  • J. B. Alexander Ross
  • Elena Rusinova
  • Linda A. Luck
  • Kenneth W. Rousslang
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 6)


Optically Detect Magnetic Resonance Staphylococcal Nuclease Nonnatural Amino Acid Spectral Enhancement Human Tissue Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halvorson, H., S. Spiegelman, and R. L. Hinman, The Effect of Tryptophan Analogs on the Induced Synthesis of Maltase and Protein Synthesis in Yeast. Arch. Biochim. Biophys., 1955. 55: pp. 512–525.Google Scholar
  2. 2.
    Pardee, A. B., V. G. Shore, and L. S. Prestidge, Incorporation of Azatryptophan into Proteins of Bacteria and Bacteriphage. Biochim. Biophys. Acta, 1956. 21: pp. 406–407.CrossRefGoogle Scholar
  3. 3.
    Davie, E. W., V. V. Konnigsberger, and F. Lipmann, The Isolation of a Tryptophan-Activating Enzyme. Arch. Biochim. Biophys., 1956. 65: pp. 21–38.Google Scholar
  4. 4.
    Sharon, N. and F. Lipmann, Reactivity of Analogs with Pancreatic Tryptophan Activating Enzyme. Arch. Biochim. Biophys., 1957. 69: pp. 219–227.Google Scholar
  5. 5.
    Schlesinger, S., The Effect of Amino Acid Analogues on Alkaline Phosphatase Formation in Escherichia coli K-12. II. Replacement of Tryptophan by Azatryptophan and by Tryptazan. J. Biol. Chem., 1968. 243(14): pp. 3877–3883.Google Scholar
  6. 6.
    Schlesinger, S. and M. J. Schlesinger, The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. I. Substitution of triazolealanine for histidine. J. Biol. Chem., 1967. 242(14): pp. 3369–3372.Google Scholar
  7. 7.
    Foote, J., D. M. Ikeda, and E. R. Kantrowitz, The role of tryptophan in aspartate transcarbamylase. J. Biol. Chem., 1980. 255(11): pp. 5154–5158.Google Scholar
  8. 8.
    Sykes, B. D., H. I. Weingarten, and M. J. Schlesinger, Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl. Acad. Sci. U S A, 1974. 71(2): pp. 469–473.Google Scholar
  9. 9.
    Danielson, M. A. and J. J. Falke, Use of 19F NMR to Probe Protein Structure and Conformational Changes, in Annual Review of Biophysics and Biomolecular Structure, R. M. Stroud, et al., Editors. 1996, Annual Reviews, Inc.: Palo Alto. pp. 163–195.Google Scholar
  10. 10.
    Pratt, F. A. and C. Ho, Incorporation of Fluorotryptophan in Proteins of Escherichia coli. Biochemistry, 1975. 14: pp. 3035–3040.CrossRefGoogle Scholar
  11. 11.
    Hudson, B. S., D. L. Harris, R. D. Ludescher, A. Ruggiero, A. Cooney-Freed, and S. Cavalier, eds. Fluorescence Probe Studies of Proteins and Membranes. Applications of Fluorescence in the Biomedical Sciences, ed. D. L. Taylor. 1986, A. R. Liss: New York. 159–202.Google Scholar
  12. 12.
    Hofmann, K. and H. Bohn, Studies on Polypeptides. XXXVI. The Effect of Pyrazole-Imidazole Replacements on the S-Protein Activating Potency of an S-Peptide Fragment. J. Am, Chem. Soc., 1966. 88: pp. 5914–5919.Google Scholar
  13. 13.
    Kaiser, E. T., Synthetic Approaches to Biologically Active Peptides and Proteins including Enzymes. Acc. Chem. Res., 1989. 22: pp. 47–54.CrossRefGoogle Scholar
  14. 14.
    Bain, J. D., C. G. Glabe, T. A. Dix, C. A. R., and E. S. Dalia, Biosynthetic Site-Specific Incorporation of a Non-Natural Amino Acid into a Polypeptide. J. Am. Chem. Soc., 1989. 111: pp. 8013–8014.Google Scholar
  15. 15.
    Noren, C.J., S. J. Anthony-Cahill, M.C. Griffth, and P.G. Schultz, A General Method for Site-Specific Incorporation of Unnatural Amino Acids into Proteins. Science, 1989. 244(182–188).Google Scholar
  16. 16.
    Cornish, V. W., D. R. Benson, C. A. Altenbach, K. Hideg, W. L. Hubbell, and P. G. Schultz, Site-specific incorporation of biophysical probes into proteins. Proc. Natl. Acad. Sci USA, 1994. 91(8): p. 2910.Google Scholar
  17. 17.
    Steward, L. E., C.S. Collins, M. A. Gilmore, J. E. Carlson, J. B. A. Ross, and A. R. Chamberlin, In Vitro Site-Specific Incorporation of Fluorescent Probes into β-Galactosidase. J. Am. Chem. Soc., 1997. 119: pp. 6–11.CrossRefGoogle Scholar
  18. 18.
    Mendel, D., V. W. Cornish, and P. G. Schultz, Site-Directed Mutagenesis with an Expanded Genetic Code. Ann. Rev. Biophys. Biomol. Struct., 1995. 24: pp. 435–462.Google Scholar
  19. 19.
    Steward, L. E. and A. R. Chamberlin, Protein Expression by Expansion of the Genetic Code, in Encyclopedia of Molecular Biology and Molecular Medicine. 1996, VCH Publishers: New York.Google Scholar
  20. 20.
    Hogue, C. W., I. Rasquinha, A. G. Szabo, and J. P. MacManus, A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. FEBS Lett., 1992. 310(3): pp. 269–272.CrossRefGoogle Scholar
  21. 21.
    Ross, J. B. A., D. F. Senear, E. Waxman, B. B. Kombo, E. Rusinova, Y. T. Huang, W. R. Laws, and C. A. Hasselbacher, Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor. Proc. Natl. Acad. Sci. U.S.A., 1992. 89(24): pp. 12023–12027.Google Scholar
  22. 22.
    Ross, J. B. A., A. G. Szabo, and C. W. V. Hogue, Enhancement of Protein Spectra with Tryptophan Analogs: Fluorescence Spectroscopy of Protein-Protein and Protein-Nucleic Acid Interactions, in Fluorescence Spectroscopy, L. Brand and M. L. Johnson, Editors. 1997, Academic Press: New York. pp. 151–190.Google Scholar
  23. 23.
    Hogue, C. W. V., Tryptophanyl-tRNA Synthetase and Its Role in the Incorporation of New Intrinsic Fluorescent Probes into Proteins. 1994, Dissertation, University of Ottawa.Google Scholar
  24. 24.
    Hogue, C. W. V., S. Cyr, J. D. Brennen, T. L. Pauls, J. A. Cox, M. W. Berchtold, and A. G. Szabo, Efficient Incorporation of Tryptophan Analogues in Recombinant Rat F102 W Parvalbumin for Fluorescence and 19 F NMR Studies. Biophys. J., 1995. 68: p. A193.Google Scholar
  25. 25.
    Heyduk, E. and T. Heyduk, Physical studies on interaction of transcription activator and RNA-polymerase: fluorescent derivatives of CRP and RNA polymerase. Cell Mol. Biol. Res., 1993. 39(4): pp. 401–407.Google Scholar
  26. 26.
    Heyduk, T. and S. Callaci, Fluorescence Probes for Studying the Mechanisms of Transcription Activation. Proc. SPIE-Int. Soc. Opt. Eng., 1994. 2137: pp. 719–724.Google Scholar
  27. 27.
    Sambrook, J., E. F. Fritsch, and T. Maniatis, Molecular Cloning, a Laboratory Manual. 2nd ed. 1989, New York: Cold Spring Harbor Press.Google Scholar
  28. 28.
    Hasselbacher, C. A., R. Rusinova, E. Rusinova, and J. B. A. Ross, Spectral Enhancement of Recombinant Proteins with Tryptophan Analogs: The Soluble Domain of Human Tissue Factor, in Techniques in Protein Chemistry, J. W. Crabb, Editor. 1995, Academic Press: New York. pp. 349–356.Google Scholar
  29. 29.
    Soumillion, P., D. J. Sexton, and S. J. Benkovic, Clamp subunit dissociation dictates bacteriophage T4 DNA polymerase holoenzyme disassembly. Biochemistry, 1998. 37(7): pp. 1819–1827.CrossRefGoogle Scholar
  30. 30.
    Bronskill, P. M. and J. T. Wong, Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem. J., 1988. 249(1): pp. 305–308.Google Scholar
  31. 31.
    Hott, J. L. and R. F. Borkman, The non-fluorescence of 4-fluorotryptophan. Biochem. J., 1989. 264(1): pp. 297–299.Google Scholar
  32. 32.
    Farah, C. S. and F. C. Reinach, Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Biochemistry, 1999. 38(32): pp. 10543–10551.CrossRefGoogle Scholar
  33. 33.
    Das, K., K. D. Ashby, A. V. Smirnov, F. C. Reinach, J. W. Petrich, and C. S. Farah, Fluorescence properties of recombinant tropomyosin containing tryptophan, 5-hydroxytryptophan and 7-azatryptophan. Photochem. Photobiol., 1999. 70(5): pp. 719–730.CrossRefGoogle Scholar
  34. 34.
    Studier, F. W. and B. A. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol., 1986. 189(1): pp. 113–130.CrossRefGoogle Scholar
  35. 35.
    Hasselbacher, C. A., E. Rusinova, E. Waxman, W. Lam, A. Guha, R. Rusinova, Y. Nemerson, and J. B. A. Ross, Probing the Structure of Human Tissue Factor by Site-Directed Mutagensis and in vivo Incorporation of Tryptophan Analogs. Proc. SPIE, 1994. 2137: pp. 312–323.Google Scholar
  36. 36.
    Zemsky, J., E. Rusinova, Y. Nemerson, L. A. Luck, and J. B. A. Ross, Probing local environments of tryptophan residues in proteins: comparison of 19F NMR results with the intrinsic fluorescence of soluble human Tissue Factor. Proteins: Structure, Function and Genetics, 1999. 37: pp. 709–716.CrossRefGoogle Scholar
  37. 37.
    Waxman, E., E. Rusinova, C. A. Hasselbacher, G. P. Schwartz, W. R. Laws, and J. B. A. Ross, Determination of the tryptophan: tyrosine ratio in proteins. Anal. Biochem., 1993. 210(2): pp. 425–428.CrossRefGoogle Scholar
  38. 38.
    Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry, 1967. 6(7): pp. 1948–1954.CrossRefGoogle Scholar
  39. 39.
    Wetlaufer, D. B., Ultraviolet spectra of proteins and amino acids, in Advances in Protein Chemistry, C. B. Anfinsen, et al., Editors. 1962, Academic Press: New York. pp. 303–390.Google Scholar
  40. 40.
    Gill, S. C. and P. H. von Hippel, Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 1989. 182: pp. 319–326.CrossRefGoogle Scholar
  41. 41.
    Mach, H., C. R. Middaugh, and R. V. Lewis, Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal. Biochem., 1992. 200: pp. 74–80.Google Scholar
  42. 42.
    Minks, C., R. Huber, L. Moroder, and N. Budisa, Atomic mutations at the single tryptophan residue of human recombinant annexin V: effects on structure, stability, and activity. Biochemistry, 1999. 38(33): pp. 10649–10659.CrossRefGoogle Scholar
  43. 43.
    Rich, R. L., M. Negrerie, J. Li, S. Elliott, R. W. Thornburg, and J. W. Petrich, The photophysical probe, 7-azatryptophan, in synthetic peptides. Photochem. Photobiol., 1993. 58: pp. 28–30.Google Scholar
  44. 44.
    Brennan, J. D., C. W. V. Hogue, B. Rajendran, K. J. Willis, and A. G. Szabo, Preparation of enantiomerically pure L-7-azatryptophan by an enzymatic method and its application to the development of a fluorimetric activity assay for tryptophanyl-tRNA synthetase. Anal. Biochem., 1997. 252(2): pp. 260–270.CrossRefGoogle Scholar
  45. 45.
    Mendelson, R., personal communication.Google Scholar
  46. 46.
    Senear, D. E, J. B. A. Ross, and T. M. Laue, Analysis of protein and DNA-mediated contributions to cooperative assembly of protein-DNA complexes. Methods: A Companion to Methods in Enzymology, 1998. 16(1): pp. 3–20.Google Scholar
  47. 47.
    Hasselbacher, C. A., E. Rusinova, E. Waxman, R. Rusinova, R. A. Kohanski, W. Lam, A. Guha, J. Du, T. C. Lin, I. Polikarpov, C. W. G. Boys, Y. Nemerson, W. H. Konigsberg, J. B. A. Ross, Environments of the four tryptophans in the extracellular domain of human tissue factor comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein. Biophys. J., 1995. 69(1): pp. 20–29.CrossRefGoogle Scholar
  48. 48.
    Zemsky, J., 5-Fluoro-tryptophan as a probe for fluorescence and Flourine 19 NMR structure function studies: Analysis of 5-fluoro-tryptophan substituted soluble tissue factor, 1998, Dissertation, City University of New York.Google Scholar
  49. 49.
    Sato, A. K., E. R. Bitten, D. F. Senear, J. B. A. Ross, and K. W. Rousslang, Steady-State and Time-Resolved Phosphorescence of Wild-Type and Modified Bacteriophage λcI Repressors. J. Fluorescence, 1994. 4: pp. 195–201.CrossRefGoogle Scholar
  50. 50.
    Cioni, P., L. Erijman, and G. B. Strambini, Phosphorescence emission of 7-azatryptophan and 5-hydroxytryptophan in fluid solutions and in alpha2 RNA polymerase. Biochem Biophys. Res. Commun., 1998. 248(2): pp. 347–51.CrossRefGoogle Scholar
  51. 51.
    Sato, A. K., E. R. Bitten, D. Lambert, and K. W. Rousslang, Steady-State and Time-Resolved Phosphorescence of 5-hydroxy-L-tryptophan l cI Repressor Bound to DNA. Proc. SPIE, 1994. 2137: pp. 343–352.Google Scholar
  52. 52.
    Kwiram, A. L., Optical Detection of Paramagnetic Resonance in Phosphorescent Triplet States. Chem. Phys. Lett., 1967. 1: pp. 272–275.CrossRefGoogle Scholar
  53. 53.
    Schmidt, J., W. S. Veeman, and J. H. van der Waals, Microwave Induced Delayed Phosphorescence. Chem. Phys. Lett., 1969. 4: pp. 341–346.CrossRefGoogle Scholar
  54. 54.
    Ozarowski, A., J.Q. Wu, and A. H. Maki, Global Analysis of Microwave-Induced Delayed Phosphorescence of Photoexcited Triplet States. J. Magn. Reson., Ser. A, 1996. 121: pp. 178–186.CrossRefGoogle Scholar
  55. 55.
    Wong, C. Y. and M. R. Eftink, Incorporation of tryptophan analogues into staphylococcal nuclease, its V66 W mutant, and Delta 137–149 fragment: spectroscopic studies. Biochemistry, 1998. 37(25): pp. 8938–8946.Google Scholar
  56. 56.
    Ozarowski, A., J.Q. Wu, S. K. Davis, C. Y. Wong, M. R. Eftink, and A. H. Maki, Phosphorescence and optically detected magnetic resonance characterization of the environments of tryptophan analogues in staphylococcal nuclease, its V66 W mutant, and Delta 137–149 fragment. Biochemistry, 1998. 37(25): pp. 8954–8964.CrossRefGoogle Scholar
  57. 57.
    Wong, C. Y. and M. R. Eftink, Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability. Protein Sci., 1997. 6(3): pp. 689–697.Google Scholar
  58. 58.
    McCaul, C. and R. D. Ludescher, Phosphorescence from tryptophan and tryptophan analogs in the solid state. Proc. SPIE, 1998. 3256: pp. 263–268.Google Scholar
  59. 59.
    Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson, Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem., 1996. 271(9): pp. 4827–4837.Google Scholar
  60. 60.
    Callaci, S. and T. Heyduk, Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme. Biochemistry, 1998. 37(10): pp. 3312–3320.CrossRefGoogle Scholar
  61. 61.
    Soumillion, P., L. Jespers, J. Vervoort, and J. Fastrez, Biosynthetic incorporation of 7-azatryptophan into the phage lambda lysozyme: estimation of tryptophan accessibility, effect on enzymatic activity and protein stability. Protein Eng., 1995. 8(5): pp. 451–456.CrossRefGoogle Scholar
  62. 62.
    Beckett, D., E. Kovaleva, and P. J. Schatz, A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci., 1999. 8(4): pp. 921–929.Google Scholar
  63. 63.
    Petra, P. H., P. C. Namkung, D. F. Senear, D. A. McCrae, K. W. Rousslang, D. C. Teller, and J. B. A. Ross, Molecular characterization of the sex steroid binding protein (SBP) of plasma. Re-examination of rabbit SBP and comparison with the human, macaque and baboon proteins. J. Steroid Biochem., 1986. 25(2): pp. 191–200.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. B. Alexander Ross
    • 1
  • Elena Rusinova
    • 1
  • Linda A. Luck
    • 2
  • Kenneth W. Rousslang
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyMount Sinai School of MedicineNew York
  2. 2.Department of ChemistryClarkson UniversityPotsdam
  3. 3.Department of ChemistryUniversity of Puget SoundTacoma

Personalised recommendations