Light Scattering from Charge and Spin Excitations in Cuprate Systems

  • Rudi Hackl
Part of the NATO Science Series: B: book series (NSSB, volume 371)

Abstract

Results from Raman scattering experiments in differently doped cuprate systems as well as the theoretical background for the analysis of the data are examined with the main focus placed on electronic excitations and their interactions. The response is studied as a function of polarization and temperature in both the normal and the superconducting state. Anisotropies in the CuO2 plane increase with decreasing doping level suggesting an increasingly strong k dependence of electronic properties. In the normal state, below approximately 200 K, intensity anomalies are found in the spectra of underdoped materials being indicative of a pseudogap in direction of the principal axes. At all doping levels studied the superconducting gap has predominantly \( d_{x^2 - y^2 } \) symmetry with an amplitude of 0/kTc= 8 independent of the transition temperature Tc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For TaC and HfC see: H.G. Smith and W. Gläser, Phys. Rev. Lett. 25, 1611 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    G. Shirane and J.D. Axe, Phys. Rev. Lett. 27, 1803 (1971).CrossRefADSGoogle Scholar
  3. 3.
    B.P. Schweiß, B. Renker, E. Schneider, and W. Reichardt, in Superconductivity in d-and f-Band Metals II, D.H. Douglass ed., p. 189 (Plenum Press, New York, 1976).Google Scholar
  4. 4.
    L. Pintschovius, H. Takei, and N. Toyota, Phys. Rev. Lett. 54, 1260 (1985).CrossRefADSGoogle Scholar
  5. 5.
    J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).CrossRefADSGoogle Scholar
  6. 6.
    B. Batlogg, in High-Temperature Superconductivity: The Los Alamos Symposium-1989, Eds. K. Bedell, D. Coffey, D. Meltzer, D. Pines, and J.R. Schrieffer, p. 37 (Addison-Wesley Publishing Company, 1990).Google Scholar
  7. 7.
    K. Levin, Ju H. Kim, J.P. Lu, and Qimiao Si Physica C 175, 449 (1991).CrossRefADSGoogle Scholar
  8. 8.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).CrossRefADSGoogle Scholar
  9. 9.
    H. Fukuyama and H Kohno, Czech. J. Phys. 46 Suppl. S6, 3146 (1996).CrossRefGoogle Scholar
  10. 10.
    P.A. Lee J. Low Temp. Phys. 105, 581 (1996).CrossRefADSGoogle Scholar
  11. 11.
    K. Maki and H. Won, Ann. Phys 5, 320 (1996).Google Scholar
  12. 12.
    J. Ruvalds, Supercond. Sci. Technol. 9, 905 (1996).CrossRefADSGoogle Scholar
  13. 13.
    For a review see: Z.-X. Shen and D.S. Dessau, Physics Reports 253, 1 (1995) and Z.-X. Shen, W. E. Spicer, D. M. King, D. S. Dessau and B. O. Wells, Science 267, 343 (1995).CrossRefADSGoogle Scholar
  14. 14.
    P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 72, 2757 (1994).CrossRefADSGoogle Scholar
  15. 15.
    Z.-X. Shen, D.S. Dessau, B.O. Wells, D.M. King, W.E. Spicer, A.J. Arko, D. Marshall, L.W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCarlo, A.G. Loeser, and C.-H. Park, Phys. Rev. Lett. 70, 1553 (1993).CrossRefADSGoogle Scholar
  16. 16.
    R.J. Kelley, Jian Ma, G. Margaritondo, and M. Onellion, Phys. Rev. Lett. 71, 4050 (1993).CrossRefADSGoogle Scholar
  17. 17.
    H. Ding, J.C. Campuzano, A.F. Bellman, T. Yokoya, M.R. Norman, M. Randeira, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, and G. Jennings, Phys. Rev. Lett. 74, 2784 (1995).CrossRefADSGoogle Scholar
  18. 18.
    M.C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D.A. Bonn, Ruixing Liang, W.N. Hardy, Phys. Rev. B 55, 2796 (1997).CrossRefADSGoogle Scholar
  19. 19.
    D. Mandrus, L. Forró, D. Koller, L. Mihaly, Nature 351, 460 (1991).CrossRefADSGoogle Scholar
  20. 20.
    Ch. Renner and Ø. Fischer, Phys. Rev. B 51, 9208 (1995).CrossRefADSGoogle Scholar
  21. 21.
    R.C. Dynes, Solid State Commun. 92, 53 (1994).CrossRefADSGoogle Scholar
  22. 22.
    R. Kleiner, A.S. Katz, A.G. Sun, R. Summer, D.A. Gajewski, S.H. Han, S.I. Woods, E. Dantsker, B. Chen, K. Char, M.B. Maple, R.C. Dynes, and John Clarke, Phys. Rev. Lett. 76, 2161 (1996).CrossRefADSGoogle Scholar
  23. 23.
    R.E. Glover and M. Tinkham, Phys. Rev. 104, 844 (1956); D.M. Ginsberg and M. Tinkham, Phys. Rev. 118, 990 (1960); L.H. Palmer and M. Tinkham, Phys. Rev. 165, 588 (1968).CrossRefADSGoogle Scholar
  24. 24.
    Review: T. Timusk and D. Tanner, in Physical Properties of High Temperature Superconductors I, D.M. Ginsberg ed., p. 339 (World Scientific, Singapore, 1989)Google Scholar
  25. 25.
    J. Orenstein, G.A. Thomas, A.J. Millis, S.L. Cooper, D.H. Rapkine, T. Timusk, L.F. Schneemeyer, and J.V. Wazczak, Phys. Rev. B 42, 6342 (1990)CrossRefADSGoogle Scholar
  26. 26.
    Review: D. Tanner and T. Timusk, in Physical Properties of High Temperature Superconductors III, D.M. Ginsberg ed., p. 363 (World Scientific, Singapore, 1992)Google Scholar
  27. 27.
    Z. Schlesinger, R.T. Collins, L.D. Rotter, F. Holtzberg, C. Field, U. Welp, G.W. Crabtree, J.Z. Liu, Y. Fang, K.G. Vandervoort, and S. Fleshier, Physica C 235-240, 49 (1994).CrossRefADSGoogle Scholar
  28. 28.
    S. Uchida, K. Tamasaku, K. Takenaka, and Y. Fukuzumi, J. Low Temp. Phys. 105, 723 (1996).CrossRefADSGoogle Scholar
  29. 29.
    K. Kamarás, S.L. Herr, C.D. Porter, N. Tache, D.B. Tanner, S. Etemad, T. Venkatesan, E. Chase, A. Inam, X.D. Wu, M.S. Hedge, and B. Dutta, Phys. Rev. Lett. 64, 84 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    D.C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).ADSMATHCrossRefGoogle Scholar
  31. 31.
    C.C. Homes, T. Timusk, Ruixing Liang, D.A. Bonn, and W.N. Hardy, Phys. Rev. Lett. 71, 1645 (1993).CrossRefADSGoogle Scholar
  32. 32.
    D.N. Basov, T. Timusk, B. Dabrovski, and J.D. Jorgensen, Phys. Rev. B 50, 3511 (1994)CrossRefADSGoogle Scholar
  33. 33.
    A.V. Puchkov, P. Fournier, D.N. Basov, T. Timusk, A. Kapitulnik, and N.N. Kolesnikov, Phys. Rev. Lett. 77, 3212 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Schlesinger, R.T. Collins, F. Holtzberg, C. Field, S.H. Blanton, U. Welp, G.W. Crabtree, Y. Fang, and J.Z. Phys. Rev Lett. 65, 801 (1990).ADSCrossRefGoogle Scholar
  35. 35.
    For a review see: D. Einzel and R. Hackl, J. Raman Spectroscopy 27, 307 (1996).CrossRefADSGoogle Scholar
  36. 36.
    T. P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H. Leach and J. J. Neumeier, Phys. Rev. Lett. 72, 396 (1994) and 72, 3291 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16336 (1995) and Phys. Rev. B 54, 15547 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    X.K. Chen, J.C. Irwin, H.. Trodahl, T. Kimura and K. Kishiiu, Phys. Rev. Lett. 73, 3290 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    A. Hoffmann, P. Lemmens, G. Güntherodt, V. Thomas, and K. Winzer, Physica C 235-240, 1897 (1994).ADSCrossRefGoogle Scholar
  40. 40.
    B. Stadlober, G. Krug, R. Nemetschek, M. Opel, R. Hackl, D. Einzel, C. Schuster, T. P. Devereaux, L. Foró, J. L. Cobb, J. T. Markert and J. J. Neumeier, Journ. of Phys. Chem. Solids 56, 1841 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    A. Hoffmann et al., J. Low. Temp. Phys. 99, 201 (1995).CrossRefADSGoogle Scholar
  42. 42.
    A. Yamanaka, N. Asayama, T. Furutani, K. Inoue, S. Takegawa, SPIE (Bellingham) Vol. 2696, 276 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    R. Hackl, G. Krug, R. Nemetschek, M. Opel, and B. Stadlober, SPIE (Bellingham) Vol. 2696, 194 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    B. Stadlober, R. Nemetschek. O.V. Misochko, R. Hackl, P. Müller, J.J. Neumeier, and K. Winzer, Physica B 194-196, 1539 (1994)CrossRefADSGoogle Scholar
  45. 45.
    B. Stadlober, Doctoral thesis (Technische Universität Müchen, 1996)Google Scholar
  46. 46.
    L.V. Gasparov, P. Lemmens, M. Brinkmann, N.N. Kolesnikov, and G. Güntherodt, Phys. Rev. B 55, 1223 (1997).CrossRefADSGoogle Scholar
  47. 47.
    A. Sacuto, R. Combescot, N. Bontemps, P. Monod, V. Viallet, and D. Colson, Europhys. Lett. 39, 207 (1997). The data for HgBa 2 CaCu 2 O 6 are very similar to those found in the other compounds while the interpretation is different. In this paper, an extended s-wave gap is favored over d-wave. It is noted, however, that satisfactory agreement with the data can only be obtained if screening is not taken into account for the calculation of the A 1g response.CrossRefADSGoogle Scholar
  48. 48.
    H. Monien and A. Zawadowski, Phys. Rev. Lett. 63, 911 (1989).CrossRefADSGoogle Scholar
  49. 49.
    S.L. Cooper, M.V. Klein, B.G. Pazol, J.P. Rice, and D. Ginsberg, Phys. Rev. B 37, 5820 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    R. Hackl, W. Gläser, P. Müller, D. Einzel and K. Andres, Phys. Rev. B 38, 7133 (1988).CrossRefADSGoogle Scholar
  51. 51.
    S.L. Cooper, F. Slakey, M.V. Klein, J.P. Rice, E.D. Bukowski, and D. Ginsberg, Phys. Rev. B 38, 11934 (1988)CrossRefADSGoogle Scholar
  52. 52.
    A. Yamanaka, F. Minami, and K, Inoue, Physica C 162–164, 1099 (1989).CrossRefGoogle Scholar
  53. 53.
    M. C. Krantz, H. J. Rosen, J. Y. T. Wie and D. E. Morris, Phys. Rev. B 40, 2635 (1989).CrossRefADSGoogle Scholar
  54. 54.
    A. Yamanaka, H. Takato, F. Minami, K. Inoue, and S. Takekawa, et al. Phys. Rev. B 46, 516 (1992)CrossRefADSGoogle Scholar
  55. 55.
    A. A. Maximov, A. V. Puchkov, I. I. Tartakovskii, V. B. Timofeev, D. Reznik and M. V. Klein, Solid State Commun. 81, 407 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    T. Staufer, R. Nemetschek, R. Hackl, P. Müller and H. Veith, Phys. Rev. Lett. 68, 1069 (1992).CrossRefADSGoogle Scholar
  57. 57.
    R. Nemetschek, O.V. Misochko, B. Stadlober, and R. Hackl, Phys. Rev. B 47, 3450 (1993).CrossRefADSGoogle Scholar
  58. 58.
    Ivan Bozovic, Phys. Rev. B 42, 1969 (1990)Google Scholar
  59. 59.
    T. P. Devereaux, Phys. Rev. B 45, 12965 (1992).CrossRefADSGoogle Scholar
  60. 60.
    T. P. Devereaux, Phys. Rev. B 47, 5230 (1993).ADSCrossRefGoogle Scholar
  61. 61.
    A. A. Abrikosov and L. A. Fal’kovskii, Zh. Eksp. Teor. Fiz. 40, 262 (1961) [Sov. Phys. JETP 13, 179 (1961)].Google Scholar
  62. 62.
    A. A. Abrikosov and V.M. Genkin, Zh. Eksp. Teor. Fiz. 65, 842 (1973) [Sov. Phys. JETP 38, 417 (1974)].ADSGoogle Scholar
  63. 63.
    M. V. Klein and S. B. Dierker, Phys. Rev. B 29, 4976 (1984).ADSCrossRefGoogle Scholar
  64. 64.
    H. Monien, und A. Zawadowski, Phys. Rev. B 41, 8798 (1990).ADSCrossRefGoogle Scholar
  65. 65.
    L.C. Hebel and C.P. Slichter, Phys. Rev. 107, 901 (1957); ibid 113, 1504 (1959); L.C. Hebel, ibid 116, 79 (1959).CrossRefADSGoogle Scholar
  66. 66.
    For reviews see: C. Thomsen and M. Cardona in in Physical Properties of High Temperature Superconductors I, D.M. Ginsberg ed., p. 509 (World Scientific, Singapore, 1989) and C. Thomsen in Light Scattering in Solids VI, Topics in Applied Physics 68, p. 285 (Springer, Berlin Heidelberg, 1991)Google Scholar
  67. 67.
    K.B. Lyons and P.A. Fleury, J. Appl. Phys. 64, 6075 (1988)CrossRefADSGoogle Scholar
  68. 68.
    M. Pressl, M. Mayer, P. Knoll, S. Lo, U. Hohenester, and E. Holzinger-Schweiger, J. Raman Spectroscopy 27, 343 (1996).CrossRefADSGoogle Scholar
  69. 69.
    B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990)CrossRefADSGoogle Scholar
  70. 70.
    R. Zeyher and G. Zwicknagl, Z. Phys. B 78, 175 (1990)CrossRefADSGoogle Scholar
  71. 71.
    T. P. Devereaux Phys. Rev. B 50, 10287 (1994).ADSCrossRefGoogle Scholar
  72. 72.
    T. P. Devereaux, A. Virosztek, and A. Zawadowski, Phys. Rev. B 51, 505 (1995).ADSCrossRefGoogle Scholar
  73. 73.
    R. Zamboni, G. Ruani, A.J. Pal, and C. Taliani, Solid State Commun. 70, 813 (1989)CrossRefADSGoogle Scholar
  74. 74.
    K.A. Müller, Z. Phys. B 80, 193 (1990)ADSCrossRefGoogle Scholar
  75. 75.
    P. Knoll, C. Ambrosch-Draxl, R. Abt, M. Mayer, E. Holzinger-Schweiger, Physica C 235-240, 2117 (1994).CrossRefADSGoogle Scholar
  76. 76.
    For a review see: R. Feile, Physica C 159, 1 (1989).CrossRefADSGoogle Scholar
  77. 77.
    P.W. Anderson, Science 235, 1196 (1987).ADSCrossRefGoogle Scholar
  78. 78.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSCrossRefGoogle Scholar
  79. 79.
    D. Pines, Physica B 163, 78 (1990)CrossRefADSGoogle Scholar
  80. 80.
    A.J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).ADSCrossRefGoogle Scholar
  81. 81.
    J. Wagner, W. Hanke, and D. Scalapino, Phys. Rev. B 43, 10517 (1991) and Physica C 185–189, 1617 (1991).ADSCrossRefGoogle Scholar
  82. 82.
    D. Pines, Z. Phys. B 103, 129 (1997).CrossRefADSGoogle Scholar
  83. 83.
    V. Emery and S.A. Kivelson, Nature 374, 434 (1995).CrossRefADSGoogle Scholar
  84. 84.
    J.R. Schrieffer and A.P. Kampf, J. Phys. Chem. Solids 56, 1673 (1995).ADSCrossRefGoogle Scholar
  85. 85.
    J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B 46, 5561 (1992).CrossRefADSGoogle Scholar
  86. 86.
    J. Rossat-Mignot, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J.Y. Henry, and G. Lapertot, Physica B 180&181, 383 (1992).CrossRefGoogle Scholar
  87. 87.
    T.E. Mason, G. Aeppli, and H.A. Mook, Phys. Rev Lett. 68, 1414 (1992).CrossRefADSGoogle Scholar
  88. 88.
    P. Bourges, L.P. Regnault, Y. Sidis, and C. Vettier, Phys. Rev. B 53, 1 (1996).CrossRefGoogle Scholar
  89. 89.
    K.B. Lyons, P.A. Fleury, J.P. Remeika, A.S. Cooper, and J.T. Negran, Phys. Rev. B 37, 2353 (1987).ADSCrossRefGoogle Scholar
  90. 90.
    K.B. Lyons, P.A. Fleury, L.F. Scheemeyer, and J.V. Wazczak, Phys. Rev. Lett. 60, 732 (1988).CrossRefADSGoogle Scholar
  91. 91.
    S. Sugai, S. Shamoto, and M. Sato, Phys. Rev. B 38, 6436 (1988).CrossRefADSGoogle Scholar
  92. 92.
    I. Tomeno, M. Yoshida, K. Ikeda, K. Tai, K. Takamuku, N. Koshizuka, S. Tanaka, K. Oka, and H. Unoki, Phys. Rev. B 43, 3009 (1991).CrossRefADSGoogle Scholar
  93. 93.
    M. Rübhausen, N. Dieckmann, A. Bock, U. Merkt, W. Widder, H.F. Braun, J. Low Temp. Phys. 105, 761 (1996)CrossRefADSGoogle Scholar
  94. 94.
    M. Rübhausen, N. Dieckmann, K.-O. Subke, A. Bock, U. Merkt, Physica C 280, 77 (1997)CrossRefADSGoogle Scholar
  95. 95.
    R. Philipp, unpublished results.Google Scholar
  96. 96.
    P.A. Fleury and R. Loudon, Phys. Rev. 166, 514 (1968).CrossRefADSGoogle Scholar
  97. 97.
    J.B. Parkinson, J. Phys. C 2, 2012 (1969).ADSCrossRefGoogle Scholar
  98. 98.
    M. Rübhausen, private communicationGoogle Scholar
  99. 99.
    H. Shaked, P.M. Kaeane, J.C. Rodriguez, F.F. Owen, R.L. Hitterman, and J.D. Jorgensen, Crystal Structures od High-T, Superconducting Copper Oxides (Elsevier, Amsterdam, 1994)Google Scholar
  100. 100.
    B. Koch, H.P. Geserich, and Th. Wolf, Solid State Commun. 71, 495 (1989)CrossRefADSGoogle Scholar
  101. 101.
    W. Hayes and R. Loudon, Scattering of Light by Crystals (John Wiley & Sons, New York, 1978)Google Scholar
  102. 102.
    M.V. Klein, in in Light Scattering in Solids III, M. Cardona and G. Güntherodt eds., p. 136 (Springer. Berlin, 1982).Google Scholar
  103. 103.
    N.W. Asheroft and N.D. Mermin, Solid State Physics (Holt-Saunders International Editions, 1981). The derivation of the cross section is exactly the same as for neutrons. Note, however, that second order perturbation theory is needed for Raman scattering.62–64 Google Scholar
  104. 104.
    L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1969).Google Scholar
  105. 105.
    L.D. Landau and E.M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, Oxford, 1960).MATHGoogle Scholar
  106. 106.
    D. Forster, Hydrodynamical Fluctuations, Broken Symmetry and Correlation Functions (W.A. Benjamin Inc., Massachusetts, 1975).Google Scholar
  107. 107.
    T. P. Devereaux, A. Virosztek, and A. Zawadowski, Phys. Rev. B 54, 12523 (1996).ADSCrossRefGoogle Scholar
  108. 108.
    J. Yu and A.J. Freeman, J. Phys. Chem. Solids 52, 1351 (1991).ADSCrossRefGoogle Scholar
  109. 109.
    W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  110. 110.
    O.K. Andersen, A.I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).ADSCrossRefGoogle Scholar
  111. 111.
    P. B. Alien, Phys. Rev. B 13, 1416 (1976).ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    A. Zawadowski and M. Cardona, Phys. Rev. B 42, 10732 (1990).CrossRefADSGoogle Scholar
  113. 113.
    Tsuneto, Phys. Rev. 118, 1029 (1960).CrossRefADSMATHGoogle Scholar
  114. 114.
    T.P. Devereaux, SPIE (Bellingham) Vol. 2696, 230 (1996).ADSCrossRefGoogle Scholar
  115. 115.
    T.P. Devereaux and A. Kampf, International Journal of Modern Physics B (1997)Google Scholar
  116. 116.
    T. P. Devereaux, Phys. Rev. Lett. 74, 4313 (1995).CrossRefADSGoogle Scholar
  117. 117.
    A. Virosztek and J. Ruvalds, Phys. Rev. Lett. 67, 1657 (1991) and Phys. Rev. B 45, 347 (1992).CrossRefADSGoogle Scholar
  118. 118.
    D.R. Tilley, Z. Phys. 254, 71 (1972).ADSCrossRefGoogle Scholar
  119. 119.
    D. Einzel, B. Stadlober, R. Nemetschek, T. Staufer, and R. Hackl, Physica B 194-196, 1487 (1994).ADSCrossRefGoogle Scholar
  120. 120.
    C. Schuster, Diploma Thesis (Technische Universität München, 1995) unpublished.Google Scholar
  121. 121.
    P.E. Sulewski, P.A. Fleury, K.B. Lyons, and S.-W. Cheong, Phys. Rev. Lett. 67, 3864 (1991).CrossRefADSGoogle Scholar
  122. 122.
    R.R.P. Singh, P.A. Fleury, K.B. Lyons, and P.E. Sulewski, Phys. Rev. Lett. 62, 2736 (1989).ADSCrossRefGoogle Scholar
  123. 123.
    P. Knoll, C. Thomsen, M. Cardona, and P. Murugaraj, Phys. Rev. B 42, 4842, (1990).CrossRefADSGoogle Scholar
  124. 124.
    M. Rübhausen, N. Dieckmann, A. Bock, and U. Merkt, Phys. Rev. B 54, 14967 (1996).CrossRefADSGoogle Scholar
  125. 125.
    R. Hackl, unpublished results.Google Scholar
  126. 126.
    T. Staufer, R. Hackl, and P. Müller, Solid State Commun. 75, 975 (1990) and 79, 409 (1991)CrossRefADSGoogle Scholar
  127. 127.
    S. Jandl et al. Solid State Commun. 87, 609 (1993).ADSCrossRefGoogle Scholar
  128. 128.
    B. Stadlober, G. Krug, R. Nemetschek, R. Hackl, J. L. Cobb and J. T. Markert, Phys. Rev. Lett. 74, 4911 (1995).CrossRefADSGoogle Scholar
  129. 129.
    E.T. Heyen et al. Phys. Rev. B 43, 2857 (1991).ADSCrossRefGoogle Scholar
  130. 130.
    H. Wipf, M.V. Klein, B.S. Chandrasekhar, T.H. Geballe, and J.H. Wernick, Phys. Rev. Lett. 41, 1752 (1978).CrossRefADSGoogle Scholar
  131. 131.
    V.N. Kostur and G.M. Eliashberg, Pis’ma Zh. Eksp. Teor. Fiz. 53, 373 (1991) [JETP Lett. 53, 391 (1991) and V.N. Kostur, Z. Phys. B 89, 149 (1992).ADSGoogle Scholar
  132. 132.
    S.N. Rashkeev and G. Wendin, Phys. Rev. B 47, 11603 (1993)CrossRefADSGoogle Scholar
  133. 133.
    C. Jiang and J. Carbotte, Solid State Commun. 95, 643 (1995) and Phys. Rev. B 53, 11868 (1996).CrossRefADSGoogle Scholar
  134. 134.
    T.P. Devereaux, priv. commum.Google Scholar
  135. 135.
    A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568 (1983).CrossRefADSGoogle Scholar
  136. 136.
    Hackl, M. Opel, P.F. Müller, G. Krug, B. Stadlober, R. Nemetschek, H. Berger, and L. Forró, J. Low Temp. Phys. 105, 733 (1996).CrossRefADSGoogle Scholar
  137. 137.
    R.T. Demers, S. Kong, M.V. Klein, R. Du, and C.P. Flynn, Phys. Rev. B 38, 11523 (1988).CrossRefADSGoogle Scholar
  138. 138.
    Bozovic, J.H. Kim, J.S. Harris Jr., C.B. Eom, J.M. Phillips, and J.T. Cheung, Phys. Rev. Lett. 73, 1436 (1994).CrossRefADSGoogle Scholar
  139. 139.
    A. Bardasis and J.R. Schrieffer, Phys. Rev. 121, 1900 (1961).CrossRefGoogle Scholar
  140. 140.
    T.J. Greytag and J. Yan, Phys. Rev. Lett. 22, 987 (1969).ADSCrossRefGoogle Scholar
  141. 141.
    A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).CrossRefADSGoogle Scholar
  142. 142.
    R. Hackl, Doctoral Thesis (Technische Universität München, 1987).Google Scholar
  143. 143.
    R. Hackl, R. Kaiser, and W. Gläser, Physica C 162–164, 431 (1989)CrossRefGoogle Scholar
  144. 144.
    P.B. Littlewood and C.M. Varma, Phys. Rev. Lett. 47, 811 (1981).CrossRefADSGoogle Scholar
  145. 145.
    D.A. Browne and K. Levin, Phys. Rev. B 28, 4029 (1983).CrossRefADSGoogle Scholar
  146. 146.
    I. Tüttö and A. Zawadowski, Phys. Rev. B 45, 4842 (1992).CrossRefADSGoogle Scholar
  147. 147.
    R. Hackl and R. Kaiser, J. Phys. C, 21, L453 (1988).CrossRefADSGoogle Scholar
  148. 148.
    A. Mooradian, Phys. Rev. Lett. 22, 185 (1969).CrossRefADSGoogle Scholar
  149. 149.
    H. Ihara, Y. Kimura, M. Yamazaki, and S. Gonda, Phys. Rev. B 27, 551 (1983).CrossRefADSGoogle Scholar
  150. 150.
    S. Sugai, T. Ido, H Takagi, S. Uchida, M. Sato, and S Shamoto, Solid State Commun. 76, 365 (1990).ADSCrossRefGoogle Scholar
  151. 151.
    F. Slakey, M.V. Klein, J.P. Rice, and D.M. Ginsberg, Phys. Rev B 43, 3764 (1991).CrossRefADSGoogle Scholar
  152. 152.
    T. Katsufuji, Y. Tokura, T. Ido, and S. Uchida, Phys. Rev. B 48, 16131 (1993).CrossRefADSGoogle Scholar
  153. 153.
    X.K. Chen, J.C. Irwin, R. Liang, and W.N. Hardy, Physica C 227, 113 (1994) and X.K. Chen, J.G. Naeini, K.C. Hewitt, J.C. Irwin, R. Liang, and W.N. Hardy, Phys. Rev. B 56, R513 (1997)CrossRefADSGoogle Scholar
  154. 154.
    P.F. Müller, Diploma Thesis (Technische Universität München, 1996) unpublished.Google Scholar
  155. 155.
    C. Hoffmann, Diploma Thesis (Technische Universität München, 1997) unpublished.Google Scholar
  156. 156.
    C. Kendziora, M.C. Martin, J. Hartge, L. Mihaly, L. Forró, Phys. Rev. 48, 3531 (1993)ADSCrossRefGoogle Scholar
  157. 157.
    C. Kendziora, L. Forró, D. Mandrus, J. Hartge, P. Stephens, L. Mihaly, R. Reeder, D. Moecher, M. Rivers, and S. Sutton, Phys. Rev. 45, 13025 (1992).CrossRefGoogle Scholar
  158. 158.
    P.W. Anderson, Phys. Rev. Lett. 67, 2091 (1991).ADSGoogle Scholar
  159. 159.
    B.P. Stojkovic and D. Pines, Phys. Rev. B 55, 8576 (1997).ADSCrossRefGoogle Scholar
  160. 160.
    J. Altmann, W. Brenig, and A. Kampf, preprint.Google Scholar
  161. 161.
    T.P. Devereaux and A. Kampf, preprint.Google Scholar
  162. 162.
    H. Ding, M.R. Norman, T. Yokoya, T. Takeuchi, M. Randeira, J.C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 78, 2628 (1997).CrossRefADSGoogle Scholar
  163. 163.
    D.S. Marshall, D.S. Dessau, A.G. Loeser, C.H, Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, et al. Phys. Rev. Lett. 76, 4841 (1996).CrossRefADSGoogle Scholar
  164. 164.
    T.R. Chien, Z.Z. Wang. and N.P. Ong, Phys. Rev. Lett. 67, 2088 (1991).CrossRefADSGoogle Scholar
  165. 165.
    A. Carrington, A.P. Mackenzie, C.T. Lin, and J.R. Cooper, Phys. Rev. Lett. 69, 2855 (1992).CrossRefADSGoogle Scholar
  166. 166.
    T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995 (1993).CrossRefADSGoogle Scholar
  167. 167.
    J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, Phys. Rev. Lett. 72, 1740 (1993).ADSCrossRefGoogle Scholar
  168. 168.
    T. Imai, et al., Physica C 162–164, 169 (1989).CrossRefGoogle Scholar
  169. 169.
    N.F. Mott, Philos. Mag. Lett. 63, 319 (1991) and A.S. Alexandrov and N.F. Mott in Polarons and Bipolarons (World Scientific, Singapore, 1996).ADSCrossRefGoogle Scholar
  170. 170.
    J. Ranninger and J.M. Robin, Phys. Rev. B 53, R11961 (1996).CrossRefADSGoogle Scholar
  171. 171.
    A.G. Loeser et al., Science 273, 325 (1996).ADSCrossRefGoogle Scholar
  172. 172.
    H. Ding et al. Nature 382, 51 (1996)CrossRefADSGoogle Scholar
  173. 173.
    R. Nemetschek, M. Opel, C. Hoffmann, P.F. Müller, R. Hackl, H. Berger, L. Forro, A. Erb, and E. Walker, Phys. Rev. Lett. 78, 4837 (1997).CrossRefADSGoogle Scholar
  174. 174.
    A. Erb, E. Walker, and R. Flükiger, Physica C 245, 245 (1995).CrossRefADSGoogle Scholar
  175. 175.
    Lindemer et al. J. Am. Ceram. Soc. 71, 1775 (1992).Google Scholar
  176. 176.
    A.P. Litvinchuk, C. Thomsen, and M. Cardona, Solid State Commun. 83, 343 (1992).CrossRefADSGoogle Scholar
  177. 177.
    G. Grüner, Rev. Mod. Phys. 66, 1 (1994).CrossRefADSGoogle Scholar
  178. 178.
    E. Osquiguil et al., Phys. Rev. B 49 3675 (1994).CrossRefADSGoogle Scholar
  179. 179.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefADSMathSciNetMATHGoogle Scholar
  180. 180.
    R. Hackl, R. Kaiser and S. Schicktanz, J. Phys. C 16, 1729 (1983).CrossRefADSGoogle Scholar
  181. 181.
    R. Hackl, P. Müller, D. Einzel, and W. Gläser, Physica C 162–164, 1241 (1989).CrossRefGoogle Scholar
  182. 182.
    H.P. Fredericksen et al. Solid State Commun. 48, 883 (1983).ADSCrossRefGoogle Scholar
  183. 183.
    D. A. Bonn, P. Dosanjh, R. Liang, and W. N. Hardy, Phys. Rev. Lett. 68, 2390 (1992).CrossRefADSGoogle Scholar
  184. 184.
    C. Kendziora, R.J. Kelley, and M. Onellion, Phys. Rev. Lett. 77, 727 (1996).CrossRefADSGoogle Scholar
  185. 185.
    C. Kendziora and A. Rosenberg, Phys. Rev. B 52, 9867 (1995).CrossRefADSGoogle Scholar
  186. 186.
    I. Bozovic, private communication.Google Scholar
  187. 187.
    Beom-hoan O and J.T. Markert, Phys. Rev. B 47, 8373 (1993).ADSCrossRefGoogle Scholar
  188. 188.
    D. H. Wu et al., Phys. Rev. Lett. 70, 85 (1993).ADSCrossRefGoogle Scholar
  189. 189.
    Q. Huang et al., Nature 347, 369 (1990).CrossRefADSGoogle Scholar
  190. 190.
    A.W. Sleight, Physica C 162–164, 3 (1989).CrossRefGoogle Scholar
  191. 191.
    D.M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D. Marshall, J. DiCarlo, A.G. Loeser, C.-H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).ADSCrossRefGoogle Scholar
  192. 192.
    R.O. Anderson, J.W. Allen, C.G. Olson, C. Janowitz, L.Z. Liu, J.-H. Park, M.B. Maple, Y. Dalichaouch, M.C. de Andrade, R.F. Jardim, E.A. Early, S.-J. Oh, and W.P. Ellis, Phys. Rev. Lett. 70, 3163 (1993).ADSCrossRefGoogle Scholar
  193. 193.
    M.C. de Andrade, Y. Dalichaouch, M.B. Maple, Phys. Rev. B 48, 16737 (1993).CrossRefADSGoogle Scholar
  194. 194.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).CrossRefADSGoogle Scholar
  195. 195.
    The interpretation in terms of d-wave pairing and in a single-band picture has been criticized, particularly because the A 1g response, in lowest order approximation, does not fit as well as those at the other symmetries: M.C. Krantz and M. Cardona, Phys. Rev. Lett. 72, 3290 (1994); M.C. Krantz and M. Cardona, J. Low Temp. Phys. 99, 205 (1995); M.C. Krantz, I.I. Mazin, D.H. Leach, W.Y. Lee and M. Cardona, Phys. Rev. B 51, 5949 (1995); M. Cardona, T. Strohm, and J. Kircher, SPIE (Bellingham) Vol. 2692, 182 (1996). As a matter of fact, the A 1g response, in contrast to the other symmetries, depends critically on the band structure and, consequently, on the order of the expansion (Eq. 10, see T.P. Devereaux and D. Einzel, Phys. Rev. 54, 15547). Peak frequency and shape can be tuned in a wide range by only slightly changing the parameters. Therefore, it is at least questionable to use the A 1g response as a crucial test for the theoretical model proposed in Ref. 36 The universality of the symmetry selection rules found experimentally, specifically the independence of the response on the number of CuO 2 planes and, hence, the number of conduction bands further invalidates the basis of the critizism. It is nevertheless interesting to study multiband effects and different gap symmetries on different bands, as done in some of the references quoted here. The influence of a multi-sheeted Fermi surface has actually been calculated and is found to be mild for the B 1g and B 2g spectra.107 CrossRefADSGoogle Scholar
  196. 196.
    M.T. Beal-Monod, J.-B. Bieri, and K. Maki, Europhys. Lett. 40, 201 (1997); T.P. Devereaux, priv. commun.CrossRefADSGoogle Scholar
  197. 197.
    N.E Hussey, J.R. Cooper, J.M. Wheatley, I.R. Fisher, A. Carrington, A.P. Mackenzie, C.T. Lin, and O. Milat, Phys. Rev. Lett. 76, 122 (1996).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rudi Hackl
    • 1
  1. 1.Walther-Meissner-InstitutBayerische Akademie der WissenschaftenGarchingGermany

Personalised recommendations