Fluid, Kinetic and Hybrid Simulation Strategies for Modeling Chemically Complex Inductively Coupled Plasmas

  • Ming Li
  • Hiroyuki Date
  • David B. Graves
Part of the NATO Science Series: B book series (NSSB, volume 367)


Boltzmann Equation Hybrid Model Fluid Model Electron Energy Distribution Function Plasma Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hashimoto, New Phenomena of Charge Damage Plasma Etching: Heavy Damage only Through Dense-line Antenna, Jpn. J. Appl. Phys., 32:6109 (1993).CrossRefADSGoogle Scholar
  2. 2.
    K. Hashimoto, Charge Damage Caused by Electron Shading Effect, Jpn. J. Appl. Phys., 33:6013 (1994).CrossRefADSGoogle Scholar
  3. 3.
    S. Sakaimori, T. Maruyama, N. Fujiwara, and H. Miyatake, Evaluation of Electron Shading Build Up Damage Using Metal-Nitride-Oxide-Silicon Capacitors, Jpn. J. Appl. Phys., 36:2521 (1997).CrossRefADSGoogle Scholar
  4. 4.
    B. Bernstein and T. Holstein, Electron Energy Distribution in Stationary Discharges, phys. Rev., 94:1475 (1954).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    L. D. Tsendin, Sov. Phys.-JEPT, 39:805 (1974).ADSGoogle Scholar
  6. 6.
    U. Kortshagen, Experimental Evidence of the Nonlocality of the Electron Distribution Function, Phys. Rev. E, 49:4369 (1994).CrossRefADSGoogle Scholar
  7. 7.
    U. Kortshagen, I. Pukropski, and M. Zethoff, Spatial Variation of the Electron Distribution Function in a rf Inductively Coupled Plasma: Experimental and Theoretical Study, J. Appl. Phys., 74:2048 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    U. Kortshagen and L. D. Tsendin, Fast 2-Dimensional Self-Consistent Kinetic Modeling of Low Pressure Inductively Coupled RF Discharges, Appl. Phys. Lett., 65:1355 (1994).CrossRefADSGoogle Scholar
  9. 9.
    C. Bush and U. Kortshagen, Numerical Solution of the Spatially Inhomogeneous Boltzmann Equation and Verification of the Nonlocal Approach for Argon Plasma, Phys. Rev. E, 51:280 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    U. Kortshagen, I. Pukropski, and L. D. Tsendin, Experimental Investigation and Fast Two-Dimensional Self-Consistent Kinetic Modeling of a Low-Pressure Inductively Coupled RF Discharge, Phys. Rev. E, 51:6063 (1995).CrossRefADSGoogle Scholar
  11. 11.
    U. Kortshagen, C. Busch, and L. D. Tsendin, On Simplifying Approaches to the Solution of the Boltzmann Equation in Spatially Inhomogeneous Plasmas, Plasma Sources Sci. Technol., 5:1 (1996).CrossRefADSGoogle Scholar
  12. 12.
    V I. Kolobov, D. F. Beale, L. J. Mahoney, and A. E. Wendt, Nonlocal Electron Kinetics in a Low-Pressure Inductively Coupled Radio-Frequency Discharge, Appl. Phys. Lett., 65:537 (1994).CrossRefADSGoogle Scholar
  13. 13.
    V. I. Kolobov and W. N. G. Hitchon, Electron Distribution Function in a Low-Pressure Inductively Coupled Plasma, Phys. Rev. E, 52:972 (1995).CrossRefADSGoogle Scholar
  14. 14.
    V I. Kolobov and V A. Godyak, Nonlocal Electron Kinetics in Collisional Gas Discharge Plasmas, IEEE Trans. Plasma Sci., 23:503 (1995).CrossRefADSGoogle Scholar
  15. 15.
    L. D. Tsendin, Electron Kinetics in Non-Uniform Glow Discharge Plasmas, Plasma Sources Sci. Technol., 4:200 (1995).CrossRefADSGoogle Scholar
  16. 16.
    D. B. Graves and K. F. Jensen, A Continuum Model of DC and RF Discharges, IEEE Trans. Plasma Sci., PS-14:78 (1986).CrossRefADSGoogle Scholar
  17. 17.
    J.-P Boeuf, Numerical Model of RF Glow Discharges, Phys. Rev. A, 36:2782 (1987).CrossRefADSGoogle Scholar
  18. 18.
    E. Gogolides, J.-P. Nicolai, and H. H. Sawin, Comparison of Experimental Measurements and Model Predictions for Radio-Frequency Ar and SF6 Discharges, J. Vac. Sci. Technol. A, 7:1001 (1989).CrossRefADSGoogle Scholar
  19. 19.
    T. Makabe, F. Tochikubo, and M. Nishimura, Influence of Negative Ions in rf-Glow Discharges in SiH4 at 13.56 MHz, Phys. Rev. A, 42:3674 (1990).CrossRefADSGoogle Scholar
  20. 20.
    C. K. Birdsall, Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions with Neutral Atoms, PIC-MIC, IEEE Trans. Plasma Sci., 19:65 (1991).CrossRefADSGoogle Scholar
  21. 21.
    M. Surendra and D. B. Graves, Electron Acoustic Waves in Capacitively Coupled, Low-Pressure rf Glow Discharges, Phys. Rev. Lett., 66:1469 (1991).CrossRefADSGoogle Scholar
  22. 22.
    V. Vahedi, C. K. Birdsall, M. A. Lieberman, G. Dipso, and T. D. Rognlien, Capacitive RF Discharges Modeled by Particle-in-Cell Monte Carlo Simulation. II. Comparisons with Laboratory Measurements of Electron Energy Distribution Function, Plasma Sources Sci. Technol., 2:273 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    M. M. Turner, Pressure Heating of Electrons in Capacitively Coupled RF Discharge, Phys. Rev. Lett., 75:1312 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    M. M. Turner and M. B. Hopkins, Anomalous Sheath Heating in a Low Pressure RF Discharge in nitrogen, Phys. Rev. Lett., 69:3511 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, 2-Dimensional Modeling of High Plasma Density Inductively Coupled Sources for Materials Processing, J. Vac. Sci. Technol. B, 12:461 (1994).CrossRefGoogle Scholar
  26. 26.
    R. A. Stewart, P. Vitello, D. B. Graves, E. F. Jaeger, and L. A. Berry, Plasma Uniformity in High Density Inductively Coupled Plasma Tools, Plasma Sources Sci. Technol., 4:36 (1995).CrossRefADSGoogle Scholar
  27. 27.
    J. D. Bukowski, D. B. Graves, and P. Vitello, Two-Dimensional Fluid Model of an Inductively Coupled Plasma with Comparison to Experimental Spatial Profiles, J. Appl. Phys., 80:2614 (1996).CrossRefADSGoogle Scholar
  28. 28.
    S. Yachi, H. Date, K. Kitamori, and H. Tagashira, A Multi-Term Boltzmann Equation Analysis of Electron Swarms in Gases — the Time-of-Flight Parameters, J. Phys. D: Appl. Phys., 24:573 (1991).CrossRefADSGoogle Scholar
  29. 29.
    V. E. Golant, A. P. Zhilinsky, and I. E. Sakharov. “Fundamentals of Plasma Physics”, John Wiley and Sons, Inc., New York (1980).Google Scholar
  30. 30.
    T. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler, Electron Heating Mechanism in Helium RF Glow Discharge — A Self-Consistent Kinetic Calculation, Phys. Rev. Lett., 63:2361 (1989).CrossRefADSGoogle Scholar
  31. 31.
    V. A. Godyak and R. B. Piejak, Abnormally Low Electron Energy and Heating — Mode Transition in a Low-Pressure Argon RF Discharge at 13.56 MHz, Phys. Rev. Lett., 65:996 (1990).CrossRefADSGoogle Scholar
  32. 32.
    M. A. Lieberman and R. A. Gottscho, Design of High Density Plasma Sources for Materials Processing, in: “Physics of Thin Films: Plasma Sources for Thin Film Deposition and Etching,” M. Francombe and J. Vossen ed., Academic Press, New York (1994).Google Scholar
  33. 33.
    P. Shkarofsky, T. W. Johnston, and M. P. Bachynski. “The Particle Kinetics of Plasmas”, Addison-Wesley, Reading, MA (1966).Google Scholar
  34. 34.
    T. Holstein, Energy Distribution of Electrons in High Frequency Gas Discharges, Phys. Rew., 70:367 (1946).ADSCrossRefGoogle Scholar
  35. 35.
    S. V. Patankar and D. B. Splading, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, 15:1787 (1972).zbMATHCrossRefGoogle Scholar
  36. 36.
    S. V. Patankar. “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York (1980).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ming Li
    • 1
  • Hiroyuki Date
    • 1
    • 2
  • David B. Graves
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.College of Medical TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations