Increasing the Resolution of Far-Field Fluorescence Light Microscopy by Point-Spread-Function Engineering

  • Stefan W. Hell
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 5)


Confocal Fluorescence Microscopy Axial Resolution Light Quenching Atomic Force Micro Single Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 2nd ed., Garland Publishing, (1989), 136–138.Google Scholar
  2. 2.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413 (1873).CrossRefGoogle Scholar
  3. 3.
    L. Rayleigh, Scientific Papers, Vol. 4, Cambridge University Press, (1903), p. 235.Google Scholar
  4. 4.
    S. Wischnitzer, Introduction to Electron Microscopy, 3rd ed. Pergamon Press (1981).Google Scholar
  5. 5.
    J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press (1993).Google Scholar
  6. 6.
    G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 49, 57–59 (1982).CrossRefGoogle Scholar
  7. 7.
    D. W. Pohl and D. Courjon (eds.) Proc. NFO1, NATO AS1 Series E 242 (1993).Google Scholar
  8. 8.
    J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology, 2nd ed., Freeman, New York (1990), p. 126.Google Scholar
  9. 9.
    E. H. Synge, Phil. Mag. 6, 356–362 (1928).Google Scholar
  10. 10.
    E. Betzig and R. Chichester, Science 262, 1422–1424 (1993).CrossRefGoogle Scholar
  11. 11.
    M. Teraski and M. E. Dailey, Confocal microscopy of living cells, in: Handbook of Biological Confocal Microscopy, 2nd ed. (J. Pawley, ed.), pp. 327–344, Plenum, New York (1995)CrossRefGoogle Scholar
  12. 12.
    R. Y. Tsien and A. Waggoner, Fluorophores for confocal microscopy, in: Handbook of Biological Confocal Microscopy, 2nd ed. (J. Pawley, ed.), pp. 267–277, Plenum, New York (1995).CrossRefGoogle Scholar
  13. 13.
    T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, and T. Lichter, Cold Spring Harbor Symp. Quant. Biol., 58, 777–792 (1993).CrossRefGoogle Scholar
  14. 14.
    R. Kopelman and W. Tan, Science 262, 1382 (1993).CrossRefGoogle Scholar
  15. 15.
    S. W. Hell, Improvement of lateral resolution in far-field fluorescence light microscopy by using two-photon excitation with offset beams, Opt. Commun. 106, 19–24 (1994).CrossRefGoogle Scholar
  16. 16.
    S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission; stimulated emission depletion fluorescence microscopy, Opt. Lett. 19, 780–782 (1994.CrossRefGoogle Scholar
  17. 17.
    S. W. Hell and M. Kroug, Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit, Appl. Phys. B. 60, 495–497 (1995).CrossRefGoogle Scholar
  18. 18.
    S. Hell, European Patent EP0491289 (filed 1990) published 1992.Google Scholar
  19. 19.
    S. Hell and E. H. K. Stelzer, Properties of a 4Pi-confocal microscope, J. Opt. Soc. Am. A 9, 2159–2164 (1992).CrossRefGoogle Scholar
  20. 20.
    S. Hell and E. H. K. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal microscope using two-photon excitation, Opt. Commun. 93, 277–281 (1992).CrossRefGoogle Scholar
  21. 21.
    M. Born and E. Wolf, Principles of Optics, 6th ed., Pergamon Press, Oxford (1993), pp. 438–442.Google Scholar
  22. 22.
    C. J. R. Sheppard and H. J. Matthews, Imaging in high-aperture optical systems, J. Opt. Soc. Am. A 4, 1354–1360 (1987).CrossRefGoogle Scholar
  23. 23.
    S. Hell, Physical basis of confocal fluorescence microscopy, Solubiologi (Jyväskylä, Finland) 3, 183–185 (1991).Google Scholar
  24. 24.
    S. Hell, E. Lehtonen, and E. Stelzer, Confocal fluorescence microscopy: wave optics considerations and applications to cell biology, in: New Dimensions of Visualization in Biomedical Microscopies (A. Kriete, ed.), pp. 145–160, Verlag Chemie, Weinheim (1992).Google Scholar
  25. 25.
    S. W. Hell, J. Soukka, and P. E. Hänninen, Two-and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: a study based on photon optics, Bioimaging 3, 1–6 (1995).CrossRefGoogle Scholar
  26. 26.
    C. J. R. Sheppard, and A. Choudhury, Image formation in the scanning microscope, Opt. Ada 24, 1051–1073 (1977).Google Scholar
  27. 27.
    G. J. Brakenhoff, P. Blom, and P. Barends, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117, 219–232 (1979).CrossRefGoogle Scholar
  28. 28.
    T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, Academic Press, London (1984).Google Scholar
  29. 29.
    T. Wilson, Confocal Microscopy, Academic Press, London (1990).Google Scholar
  30. 30.
    R. W. Wijnaendts van Resandt, H. J. B. Marsman, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, Optical fluorescence microscopy in three dimensions: microtomoscopy, J. Microsc. 138, 29–34 (1985).CrossRefGoogle Scholar
  31. 31.
    N. Åslund, A. Liljeborg, P. O. Forsgren, and S. Wahlsten, Three-dimensional digital microscopy using the PHOIBOS scanner, Scanning 9, 227–235 (1987).CrossRefGoogle Scholar
  32. 32.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, (1983), pp. 4–10.CrossRefGoogle Scholar
  33. 33.
    A. Einstein, On the quantum theory of radiation, Phys. Z. 18, 121–128 (1917).Google Scholar
  34. 34.
    M. D. Galanin, B. P. Kirsano∖itv, and Z. A. Chizhikova, Luminescence quenching of complex molecules in a strong laser field. Sov. Phys. JETP Lett. 9, 502–507 (1969).Google Scholar
  35. 35.
    I. Gryczynski, V Bogdano∖itv, and J. R. Lakowicz, Light quenching of tetraphenylbutadiene fluorescence observed during two-photon excitation, J. Fluoresc. 3, 85–92 (1993).CrossRefGoogle Scholar
  36. 36.
    J. R. Lakowicz, I. Gryczynski, V Bogdano∖itv, and J. Kusba, Light quenching and fluorescence depolarization of rhodamme and applications of this phenomenon to biophysics, J. Phys. Chem. 98(1), 334–342 (1994).CrossRefGoogle Scholar
  37. 37.
    J. R. Lakowicz, I. Gryczynski, J. Kusba, and V Bogdano∖itv, Light quenching of fluorescence: a new method to control the excited state lifetime and orientation of fluorophores, Photochem. Photobiol. 60, 546–562 (1994).CrossRefGoogle Scholar
  38. 38.
    J. Kusba, V Bogdano∖itv, I. Gryczynski, and J. R. Lakowicz, Theory of light quenching; effects on fluorescence polarization, lutensit, and anisotropy decays, Biophysics J., 67, 2024–2040 (1994).CrossRefGoogle Scholar
  39. 39.
    F. P. Schäfer (ed.), Dye Lasers, 3rd ed., Topics in Applied Physics, Vol 1, Springer, Berlin (1990).Google Scholar
  40. 40.
    K. H. Drexhage, Siegen, Germany, private communication (1994).Google Scholar
  41. 41.
    C. J. R. Sheppard, The use of lenses with annular aperture in scanning optical microscopy, Optik 48, 329 (1977).Google Scholar
  42. 42.
    S. W. Hell, P. E. Hänninen, M. Schrader, T. Wilson, and E. Soini, Resolution beyond the diffraction limit: 4Pi-confocal, STED and GSD, Zool. Stud. 34, Suppl I (1995).Google Scholar
  43. 43.
    S. W. Hell, M. Schrader, K. Bahlmann, F. Meinecke, J. R. Lakowicz, and I. Gryczynski, Stimulated emission on a microscopic scale: light quenching of pyridinium 2 using a Ti:sapphire laser, 180, RP1–RP2 (1995).Google Scholar
  44. 44.
    U. Brackmann, Lambdachrome Laser Dyes, 2nd ed., Lambda Physik, Göttingen, Germany (1985).Google Scholar
  45. 45.
    M. Schrader, F. Meinecke, K. Bahlmann, C. Cremer, and S. W. Hell, Monitoring the excited state by stimulated emission depletion, Bioimaging 3, 147–153 (1995).CrossRefGoogle Scholar
  46. 46.
    R. Gandin, Y. Lion, and A. Van de Horst, Photochem. Photobiol. 37, 271 (1983).CrossRefGoogle Scholar
  47. 47.
    C. Cremer and T. Cremer, Considerations on a laser-scanning-microscope with high resolution and depth-of-field, Microsc. Acta 81, 31–44 8 (1978).Google Scholar
  48. 48.
    B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).CrossRefGoogle Scholar
  49. 49.
    S. W. Hell, S. Lindek, and E. H. K. Stelzer, Enhancing the axial resolution in far-field light microscopy: two-photon excitation 4Pi-confocal fluorescence microscopy, J. Mod Opt. 41(4), 675–681 (1994).CrossRefGoogle Scholar
  50. 50.
    S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Measurement of the 4Pi-confocal point spread function proves 75 nm resolution, Appl. Phys. Lett. 64, 1335–1338 (1994).CrossRefGoogle Scholar
  51. 51.
    S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Confocal microscopy with enhanced detection aperture: type B 4Pi-confocal microscopy, Opt. Lett. 19, 222–224 (1994).CrossRefGoogle Scholar
  52. 52.
    M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, Optical transfer functions of 4Pi confocal microscopes: theory and experiment, Opt Lett. 22, 436–438 (1997).CrossRefGoogle Scholar
  53. 53.
    C. J. R. Sheppard and C. J. Cogswell, in: Optics in Medicine. Biology and Environmental Research (G. v. Bally, ed.) Elsevier, Amsterdam (1993).Google Scholar
  54. 54.
    M. Gu and C. J. R. Sheppard, Three-dimensional transfer-functions in 4Pi confocal microscopes, J. Opt. Soc. Am. A, 11, 1619–1627 (1994).CrossRefGoogle Scholar
  55. 55.
    M. Gu, and C. J. R. Sheppard, Optical transfer-function analysis for 2-photon 4pi confocal fluorescence microscopy, Opt. Commun. 114, 45–49 (1995).CrossRefGoogle Scholar
  56. 56.
    F. Lanni, Applications of Fluorescence in the Biological Sciences, (D. L. Taylor, ed.) Liss, New York (1986) pp. 505–521.Google Scholar
  57. 57.
    B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366, 44–46 (1993).CrossRefGoogle Scholar
  58. 58.
    F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy, Bioimaging 1, 187–192 (1994).CrossRefGoogle Scholar
  59. 59.
    C. J. R. Sheppard and R. Kompfner, Resonant scanning optical microscope, Appl. Opt. 17, 2879–2883 (1978)CrossRefGoogle Scholar
  60. 60.
    W. Denk, J. H. Strickler, and W. W. Webb, Two-photon fluorescence scanning microscopy, Science 248, 73–75 (1990).CrossRefGoogle Scholar
  61. 61.
    P. E. Hänninen, S. W. Hell, J. Salo, C. Cremer, and E. Soini, Imaging at 140 nm axial resolution with a two-photon excitation 4Pi-confocal fluorescence microscope, Appl. Phys. Lett. 66(13), 1698–1700 (1995).CrossRefGoogle Scholar
  62. 62.
    S. W. Hell, A. R. Utz, M. Schrader, P. E. Hänninen, and E. Soini, Pulsed laser fluorophore deposition: a method for measuring the axial response of two-photon excitation microscopes, J. Opt. Soc. Am. A, 12(9) 2072–2076 (1995).CrossRefGoogle Scholar
  63. 63.
    D. W. Piston, R. G. Summers, and W. W. Webb, Observation of nuclear division in living sea urchin embryos by two photon fluorescence microscopy, Biophys. J. 63A, 110 (1993).Google Scholar
  64. 64.
    E. H. K Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104, 223–228 (1994).CrossRefGoogle Scholar
  65. 65.
    W. Denk, Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions, Proc. Natl. Acad. Sci. U.S.A. 91, 6629–6633 (1994).CrossRefGoogle Scholar
  66. 66.
    D. W. Piston, B. R. Masters, and W. W. Webb, Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc. 178, 20–27 (1995).CrossRefGoogle Scholar
  67. 67.
    P. E. Hänninen, E. Soini, and S. W. Hell, Continuous wave excitation two-photon fluorescence microscopy, J. Microsc. 176, 222–225 (1994).CrossRefGoogle Scholar
  68. 68.
    S. W. Hell, P. E. Hänninen, M. Schrader, and E. Soini, Annular aperture two-photon excitation fluorescence microscopy, Opt. Commun. 117, 20–24, 1995.CrossRefGoogle Scholar
  69. 69.
    S. W. Hell, M. Schrader, P. E. Hänninen, and E. Soini, Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared, Opt. Commun. 117, 20–24 (1995)CrossRefGoogle Scholar
  70. 70.
    M. Schrader and S. W. Hell, 4Pi-confocal images with axial superresolution, J. Microsc. 183, 189–193 (1996).CrossRefGoogle Scholar
  71. 71.
    W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, Superresolution three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487, (1995).CrossRefGoogle Scholar
  72. 72.
    S. Hell, G. Reiner, C. Cremer, and E. Stelzer, Refractive index mismatch induced aberrations in confocal fluorescence microscopy, J. Microsc. 169, 391–405, (1993).CrossRefGoogle Scholar
  73. 73.
    H. Jacobsen, P. E. Hänninen, and S. W. Hell, Effect of refractive index mismatch in two-photon confocal fluorescence microscopy, J. Microsc. 176, 226–230 (1994).CrossRefGoogle Scholar
  74. 74.
    H. Jacobsen and S. W. Hell, Effect of refractive index mismatch on the resolution and image brightness in confocal fluorescence microscopy, Bioimaging 3, 39–47, (1995).CrossRefGoogle Scholar
  75. 75.
    Y. Kawata, K. Fujita, O. Nakamura, and S. Kawata, 4Pi confocal optical system with phase conjugation, Opt. Lett. 21, 1415–1417 (1996)CrossRefGoogle Scholar
  76. 76.
    M. Eigen and R. Rigler, Sorting single molecules: Application to diagnostics and evolutionary biotechnology, Proc. Natl. Acad. Sci. U.S.A. 91, 5740–5747 (1994).CrossRefGoogle Scholar
  77. 77.
    Ü. Mets and R. Rigler, Submillisecond detection of single rhodamine molecules in water, J.Fluoresc. 4, 259–264 (1994).CrossRefGoogle Scholar
  78. 78.
    S. Nie, D. T. Chiu, and R. N. Zare, Probing individual molecules with confocal fluorescence microscopy, Science 266, 1018–1021 (1994).CrossRefGoogle Scholar
  79. 79.
    M. Vaez-Iravani and D. I. Kavaldjie∖itv, Resolution beyond the diffraction limit using frequency domain field confinement in scanning microscopy, Ultramicrosc. 61, 105–110 (1995)CrossRefGoogle Scholar
  80. 80.
    S. Lindek, N. Salmon, C. Cremer, and E. H. K. Stelzer, Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy, Optik 98, 15–20 (1994)Google Scholar
  81. 81.
    S. Lindek, R. Pick, and E. H. K. Stelzer, Confocal theta microscope with three objective lenses, Rev. Sci. Instrum. 65, 3367–3372 (1994).CrossRefGoogle Scholar
  82. 82.
    S. Lindek, E. H. K. Stelzer, and S. W. Hell, Two new high-resolution confocal fluorescence microscopies (4Pi, Theta) with one and two-photon excitation, in: Handbook of Biological Confocal Microscopy (J. Pawley, ed.), Plenum, New York (1995).Google Scholar
  83. 83.
    H. T. M. van der Voort and K. C. Strasters, Restoration of confocal images for quantitative analysis, J. Microsc. 178, 165–181 (1995).CrossRefGoogle Scholar
  84. 84.
    W. A. Carrington, R. M. Lynch, and E. D. W. Moore, Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487 (1995).CrossRefGoogle Scholar
  85. 85.
    H. Kano, H. T. M. van der Voort, M. Schrader, G. van Kempen, and S. W. Hell, Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy, Bioimaging 4, 187–197 (1996).CrossRefGoogle Scholar
  86. 86.
    M. Schrader, S. W. Hell, and H. T. M. van der Voort, Potential of confocal microscopes to resolve in the 50-100 nm range, Appl. Phys. Lett. 69, 3644–3646 (1996).CrossRefGoogle Scholar
  87. 87.
    S. W. Hell, M. Schrader, and H. T. M. van der Voort, Far-field fluorescence microscopy with resolution in the 100 nm range, J. Microsc. 187, 1–5 (1997).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Stefan W. Hell
    • 1
  1. 1.High Resolution Optical Microscopy GroupMax-Planck-Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations