Tyrosine Fluorescence and Phosphorescence from Proteins and Polypeptides

  • J. B. Alexander Ross
  • William R. Laws
  • Kenneth W. Rousslang
  • Herman R. Wyssbrod
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 3)


Tyrosine Residue Aromatic Amino Acid Fluorescence Lifetime Fluorescence Decay Optically Detect Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Longworth, Luminescence of polypeptides and proteins, in: Excited States of Proteins and Nucleic Acids R. F. Steiner I. Weinryb, eds. pp. 319–484, Plenum Press, New York (1971).Google Scholar
  2. 2.
    S. V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids, Plenum Press, New York (1967).Google Scholar
  3. 3.
    R. W. Cowgill, Tyrosyl fluorescence in proteins and model peptides, Biochemical Fluorescence: Concepts 2 R. F. Chen and H. Edelhoch, eds.), pp. 441–486, Marcel Dekker, New York (1976).Google Scholar
  4. 4.
    D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids-II. Tyrosine and its simple derivatives, Photochem. Photobiol. 39, 563–575 (1984).Google Scholar
  5. 5.
    P. Debye J. O. Edwards, A note on the phosphorescence of proteins, Science 116, 143–144 (1952).Google Scholar
  6. 6.
    R. H. Steele and A. Szent-Gyorgyi, On excitation of biological substances, Proc. Natl. Acad. Sci. U.S.A. 43, pp 477–491 (1957).Google Scholar
  7. 7.
    G. Weber, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8, 415–457 (1953).PubMedGoogle Scholar
  8. 8.
    D. Duggan and S. Udenfriend, The spectrofluorometric determination of tryptophan in plasma and of tryptophan and tyrosine in protein hydrolysates, J. Biol. Chem. 223, 313–319 (1956).PubMedGoogle Scholar
  9. 9.
    V. G. Shore and A. B. Pardee, Fluorescence of some proteins, nucleic acids and related compounds, Arch. Biochem. Biophys. 60, 100–107 (1956).CrossRefPubMedGoogle Scholar
  10. 10.
    S. V. Konev, Fluorescence spectra and spectra of action of fluorescence in proteins, Dokl. Akad. Nauk. SSSR 116, 594–597 (1957).Google Scholar
  11. 11.
    Y. A. Vladimirov, Fluorescence of aromatic amino acids, Dokl. Akad. Nauk. SSSR 116, 780–783 (1957).Google Scholar
  12. 12.
    F. W. J. Teale and G. Weber, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65, 476–482 (1957).PubMedGoogle Scholar
  13. 13.
    G. H. Beaven and E. R. Holiday, Ultraviolet absorption spectra of proteins and amino acids, Adv. Protein Chem. 7, 319–386 (1952).PubMedGoogle Scholar
  14. 14.
    D. B. Wetlaufer, Ultraviolet spectra of proteins and amino acids, Adv. Protein Chem. 17, 303–390 (1962).Google Scholar
  15. 15.
    T. M. Hooker and J. A. Schellman, Optical activity of aromatic chromophores. I. o, m, and p-Tyrosine, Biopolymers 9, 1319–1348 (1970).CrossRefPubMedGoogle Scholar
  16. 16.
    J. R. Platt, Classification of spectra of cata-condensed hydrocarbons, J. Phys. Chem. 17, 484–495 (1949).Google Scholar
  17. 17.
    G. C. Pimentel, Hydrogen bonding and electronic transitions: The role of the Franck-Condon principle, J. Am. Chem. Soc. 79, 3323–3326 (1957).CrossRefGoogle Scholar
  18. 18.
    G. J. Brealey and M. Kasha, The role of hydrogen bonding in the n → π* blue-shift phenomenon, J. Am. Chem. Soc. 77, 4462–4468 (1955).CrossRefGoogle Scholar
  19. 19.
    D. A. Chignell and W. B. Gratzer, Solvent effects on aromatic chromophores and their relation to ultraviolet difference spectra of proteins, J. Phys. Chem. 72, 2934–2941 (1968).CrossRefGoogle Scholar
  20. 20.
    S. Nagakura and M. Gouterman, The effect of H bonding on the near ultraviolet absorption of naphthol, J. Phys. Chem. 26, 881–886 (1957).Google Scholar
  21. 21.
    C. A. Hasselbacher, E. Waxman, L. T. Galati, P. B. Contino, J. B. A. Ross, and W. R. Laws, Investigation of hydrogen bonding and proton transfer of aromatic alcohols in non-aqueous solvents by steady-state and time-resolved fluorescence, J. Phys. Chem. 95, 2995–3005 (1991).CrossRefGoogle Scholar
  22. 22.
    K. J. Willis and A. G. Szabo, The fluorescence decay kinetics of tyrosinate and tyrosine hydrogen bonded complexes, J. Phys. Chem. 95, 1585–1589 (1991).CrossRefGoogle Scholar
  23. 23.
    I. Weinryb and R. F. Steiner, The luminescence of the aromatic amino acids, in: Excited States of Proteins and Nucleic Acids R. F. Steiner and I. Weinryb, eds.), pp. 277–318, Plenum Press, New York (1971).Google Scholar
  24. 24.
    K. W. Rousslang, Optical detection of magnetic resonance in aromatic amino acids and proteins, Dissertation, University of Washington, Seattle, Washington (1976).Google Scholar
  25. 25.
    D. M. Rayner, D. T. Krajcarski, and A. G. Szabo, Excited-state acid-base equilibrium of tyrosine, Can. J. Chem. 56, 1238–1245 (1978).Google Scholar
  26. 26.
    W. R. Laws and L. Brand, Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83, 795–802 (1979).CrossRefGoogle Scholar
  27. 27.
    C. A. Parker, Photoluminescence of Solutions, Elsevier, New York (1968).Google Scholar
  28. 28.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).Google Scholar
  29. 29.
    B. Smaller, E. C. Avery, and J. R. Remko, Triplet-state zero-field-splitting correlations in substituted molecules, J. Chem. Phys. 46, 3976–3983 (1967).CrossRefGoogle Scholar
  30. 30.
    M. Ptak and P. Douzou, Examination of optically excited amino-acids by electron spin resonance at very low temperature, Nature 199, 1092 (1963).PubMedGoogle Scholar
  31. 31.
    T. Shiga and L. H. Piette, Triplet state studies of flavins by electron paramagnetic resonance-II, Photochem. Photobiol. 3, 223–230 (1964).Google Scholar
  32. 32.
    J. E. Maling, K. Rosenheck, and M. Weissbluth, Triplet ESR in L-tyrosine, Photochem. Photobiol. 4, 241–249 (1965).Google Scholar
  33. 33.
    J. Zuclich, Triplet-state electron paramagnetic resonance of the aromatic amino acids and proteins, J. Chem. Phys. 52, 3586–3591 (1970).PubMedGoogle Scholar
  34. 34.
    J. Zuclich, D. Schweitzer, and A. H. Maki, Optically detected magnetic resonance of the tryptophan phosphorescent state in proteins, Photochem. Photobiol. 18, 161–168 (1973).Google Scholar
  35. 35.
    A. L. Kwiram, Optical detection of magnetic resonance in molecular triplet states, in: MTP International Review of Science, Ser. 1, Physical Chemistry 4 C. A. McDowell, ed. pp. 271–315, University Park Press, Baltimore (1972).Google Scholar
  36. 36.
    T.-T. Co, J. Hoover, and A. H. Maki, Dynamics of the tyrosine triplet state from magnetic resonance saturated phosphorescence decay measurements, Chem. Phys. Lett. 27, 5–9 (1974).CrossRefGoogle Scholar
  37. 37.
    K. W. Rousslang and A. L. Kwiram, Triplet state decay and spin-lattice relaxation rate constants in tyrosinate and tryptophan, Chem. Phys. Lett. 39, 226–230 (1976).Google Scholar
  38. 38.
    W. R. Laws, J. B. A. Ross, H. R. Wyssbrod, J. M. Beechem, L. Brand, and J. C. Sutherland, Time-resolved fluorescence and 1H MR studies of tyrosine and tyrosine analogues: Correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry 25, 599–607 (1986).CrossRefPubMedGoogle Scholar
  39. 39.
    J. P. Greenstein and M. Winitz, Chemistry of the Amino Acids, p. 498, Wiley, New York (1961).Google Scholar
  40. 40.
    J. Feitelson, On the mechanism of fluorescence quenching. Tyrosine and similar compounds, J. Phys. Chem. 68, 391–397 (1964).Google Scholar
  41. 41.
    P. Gauduchon and P. Wahl, Pulse fluorimetry of tyrosyl peptides, Biophys. Chem. 8, 87–104 (1978).CrossRefPubMedGoogle Scholar
  42. 42.
    R. W. Cowgill, Fluorescence and protein structure X. Reappraisal of solvent and structural effects, Biochim. Biophys. Acta 133, 6–18 (1967).PubMedGoogle Scholar
  43. 43.
    J. E. Tournon, E. Kuntz, and M. A. El Bayoumi, Fluorescence quenching in phenylalanine and model compounds, Photochem. Photobiol. 16, 425–433 (1972).PubMedGoogle Scholar
  44. 44.
    I. H. Munro and N. Schwentner, Time resolved spectroscopy using synchrotron radiation, Nucl. Instrum. Methods 208, 819–834 (1983).Google Scholar
  45. 45.
    J. M. Beechem, J. R. Knutson, J. B. A. Ross, B. W. Turner, and L. Brand, Global resolution of heterogeneous decay by phase/modulation fluorometry: Mixtures and proteins, Biochemistry 22, 6054–6058 (1983).CrossRefGoogle Scholar
  46. 46.
    J. R. Knutson, J. M. Beechem, and L. Brand, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102, 501–507 (1983).CrossRefGoogle Scholar
  47. 47.
    J. B. A. Ross, W. R. Laws, J. C. Sutherland, A. Buku, P. G. Katsoyannis, I. L. Schwartz, and H. R. Wyssbrod, Linked-function analysis of fluorescence decay kinetics: Resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides, Photochem. Photobiol. 44, 365–370 (1986).PubMedGoogle Scholar
  48. 48.
    P. B. Contino and W. R. Laws, Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions, J. Fluorescence 1, 5–13 (1991).CrossRefGoogle Scholar
  49. 49.
    R. S. Becker, Theory and Interpretation of Fluorescence and Phosphorescence, Wiley-Interscience, New York (1969).Google Scholar
  50. 50.
    K. W. Rousslang, unpublished results.Google Scholar
  51. 51.
    T. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoeck and Ruprecht, Göttingen (1951)Google Scholar
  52. 52.
    D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–850 (1953).CrossRefGoogle Scholar
  53. 53.
    R. E. Dale, J. Eisinger, and W. E. Blumberg, The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer, Biophys. J. 26, 161–194 (1979).PubMedGoogle Scholar
  54. 54.
    J. Eisinger, B. Feuer, and A. A. Lamola, Intramolecular singlet excitation transfer. Applications to polypeptides, Biochemistry 8, 3908–3915 (1969).PubMedGoogle Scholar
  55. 55.
    J. Eisinger, Intramolecular energy transfer in adrenocorticotropin, Biochemistry 8, 3902–3908 (1969).PubMedGoogle Scholar
  56. 56.
    M. Kupryszewska, I. Gryczynski, and A. Kawski, Intramolecular donor-acceptor separations in methionine-and leucine-enkephalin estimated by long-range radiationless transfer of singlet excitation energy, Photochem. Photobiol. 36, 499–502 (1982).Google Scholar
  57. 57.
    K. W. Rousslang and A. L. Kwiram, Triplet-triplet energy transfer in the tryptophyl-tyrosinate dipeptide, Chem. Phys. Lett. 39, 231–235 (1976).Google Scholar
  58. 58.
    M. A. El-Sayed, Optical pumping of the lowest triplet state and multiple resonance optical techniques in zero field, J. Chem. Phys. 54, 680–691 (1971).CrossRefGoogle Scholar
  59. 59.
    J. B. A. Ross, K. W. Rousslang, A. G. Motton, and A. L. Kwiram, Base interactions in the triplet states of NAD+ and NADH, Biochemistry 18, 1808–1813 (1979).CrossRefPubMedGoogle Scholar
  60. 60.
    M. R. Eftink and C. A. Ghiron, Fluorescence quenching studies with proteins, Anal. Biochem. 114, 199–227 (1981).CrossRefPubMedGoogle Scholar
  61. 61.
    N. S. Kosower and E. M. Kosower, The glutathione-glutathione disulfide system, Free Radicals Biol. 2, 55–84 (1976).Google Scholar
  62. 62.
    D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids-III.Cystine and its simple derivatives, Photochem. Photobiol. 39, 577–583 (1984).Google Scholar
  63. 63.
    A. Shafferman and G. Stein, The effect of aromatic amino acids on the photochemistry of a disulfide: Energy transfer and reaction with hydrated electrons, Photochem. Photobiol. 20, 399–406 (1974).Google Scholar
  64. 64.
    R. W. Cowgill, Fluorescence and protein structure XI. Fluorescence quenching by disulfide and sulfhydryl groups, Biochim. Biophys. Acta 140, 37–44 (1967).Google Scholar
  65. 65.
    V. O. Stern and M. Volmer, On the quenching-time of fluorescence, Physik. Zeitschr. 20, 183–188 (1919).Google Scholar
  66. 66.
    W. R. Laws and P. B. Contino, Fluorescence quenching studies: Analysis of non-linear Stern-Volmer data, Methods Enzymol. 210 (in press).Google Scholar
  67. 67.
    A. Follenius and D. Gerard, Acrylamide fluorescence quenching applied to tyrosyl residues in proteins, Photochem. Photobiol. 38, 373–376 (1983).PubMedGoogle Scholar
  68. 68.
    J. B. A. Ross, W. R. Laws, A. Buku, J. C. Sutherland, and H. R. Wyssbrod, Time-resolved fluorescence and 1H NMR studies of tyrosyl residues in oxytocin and small peptides: Correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics, Biochemistry 25, 607–612 (1986).CrossRefPubMedGoogle Scholar
  69. 69.
    J. K. Swadesh, P. W. Mui, and H. A. Scheraga, Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol, Biochemistry 26, 5761–5769 (1987).CrossRefPubMedGoogle Scholar
  70. 70.
    M. V. Smoluchowski, Mathematical theory of the kinetics of the coagulation of colloidal solutions, Z. Phys. Chem. 92, 129–168 (1917).Google Scholar
  71. 71.
    A. Örstan, M. F. Lulka, B. Eide, P. H. Petra, and J. B. A. Ross, The steroid-binding site of human and rabbit sex steroid-binding protein of plasma: Fluorescence characterization with equilenin, Biochemistry 25, 2686–2692 (1986).PubMedGoogle Scholar
  72. 72.
    E. Casali, P. H. Petra, and J. B. A. Ross, Fluorescence investigation of the sex steroid binding protein of rabbit serum: Steroid and subunit dissociation, Biochemistry 29, 9334–9343 (1990).CrossRefPubMedGoogle Scholar
  73. 73.
    N. Mataga and Y. Kaifu, Intermolecular proton transfer in the excited hydrogen-bonded complex in nonpolar solvent and fluorescence quenching due to hydrogen bonding, J. Phys. Chem. 36, 2804–2805 (1962).Google Scholar
  74. 74.
    A. Matsuzaki, S. Nagakura, and K. Yoshihara, Interactions of β-naphthol and β-naphthylamine in their excited singlet states with triethylamine, Bull. Chem. Soc. Jpn. 47, 1152–1157 (1974).Google Scholar
  75. 75.
    Methods Enzymol. 210 (in press).Google Scholar
  76. 76.
    D. James and W. R. Ware, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120, 455–459 (1985).Google Scholar
  77. 77.
    J. R. Alcala, E. Gratton, and F. G. Prendergast, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51, 925–936 (1987).PubMedGoogle Scholar
  78. 78.
    H. Szmacinski, R. Jayaweera, H. Cherek, and J. R. Lakowicz, Demonstration of an associated anisotropy decay by frequency-domain fluorometry, Biophys. Chem. 27, 233–241 (1987).CrossRefPubMedGoogle Scholar
  79. 79.
    K. J. Willis, A. G. Szabo, J. Drew, M. Zuker, and J. M. Ridgeway, Resolution of heterogeneous fluorescence into component decay-associated excitation spectra, Biophys. J. 57, 183–189 (1990).PubMedGoogle Scholar
  80. 80.
    C. Helene, T. Montenay-Garestier, and J. L. Dimicoli, Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance, and circular dichroism studies, Biochim. Biophys. Acta 254, 349–365 (1971).PubMedGoogle Scholar
  81. 81.
    O. Shimizu and K. Imakubo, New emission band of tyrosine induced by interaction with phosphate ion, Photochem. Photobiol. 26, 541–543 (1977).Google Scholar
  82. 82.
    O. Shimizu, J. Watanabe, and K. Imakubo, Effect of phosphate ion on fluorescence characteristics of tyrosine and its conjugate base, Photochem. Photobiol. 29, 915–919 (1979).Google Scholar
  83. 83.
    T. Alev-Behmoaras, J.-J. Toulme, and C. Helene, Quenching of tyrosine fluorescence by phosphate ions: A model study for protein-nucleic acid complexes, Photochem. Photobiol. 30, 533–539 (1979).Google Scholar
  84. 84.
    N. C. Verma, Fluorescence fromL-tyrosine and its quenching by phosphate ions and deoxyribonucleic acid, Indian J. Biochem. Biophys. 22, 218–222 (1985).PubMedGoogle Scholar
  85. 85.
    L. J. Libertini and E. W. Small, Salt induced transitions of chromatin core particles studied by tyrosine fluorescence anisotropy, Nucleic Acids Res. 8, 3517–3534 (1980).PubMedGoogle Scholar
  86. 86.
    L. J. Libertini and E. W. Small, Effects of pH on low-salt transition of chromatin core particles, Biochemistry 21, 3327–3334 (1982).CrossRefPubMedGoogle Scholar
  87. 87.
    I. Ashikawa, Y. Nishimura, M. Tsuboi, K. Watanabe, and K. Iso, Lifetime of tyrosine fluorescence in nucleosome core particles, J. Biochem. (Tokyo) 91, 2047–2055 (1982).Google Scholar
  88. 88.
    A. Mozo-Villarias, Fluorescence study of histone tyrosyl residues of DNA, Biochem. Biophys. Res. Commun. 122, 656–661 (1984).PubMedGoogle Scholar
  89. 89.
    L. J. Libertini and E. W. Small, Effects of pH on the stability of chromatin core particles, Nucleic Acids Res. 12, 4351–4359 (1984).PubMedGoogle Scholar
  90. 90.
    V. Giancotti, M. Fonda, and C. Crane-Robinson, Tyrosine fluorescence of two tryptophan free proteins: Histones H1 and H5, Biophys. Chem. 6, 379–383 (1977).CrossRefPubMedGoogle Scholar
  91. 91.
    V. Giancotti, F. Quadrifoglio, R. W. Cowgill, and C. Crane-Robinson, Fluorescence of buried tyrosine residues in proteins, Biochim. Biophys. Acta 624, 60–65 (1980).PubMedGoogle Scholar
  92. 92.
    J. Jordano, J. L. Barbero, F. Montero, and L. Franco, Fluorescence of histones H1. A tyrosinate-like fluorescence emission in Ceratitis capitata H1 at neutral pH values, J. Biol. Chem. 258, 315–320 (1983).PubMedGoogle Scholar
  93. 93.
    S. N. Khrapunov, A. I. Dragan, A. F. Protas, and G. D. Berdyshev, The structure of the histone dimer H2A-H2B studied by spectroscopy, Biochim. Biophys. Acta 787, 97–104 (1984).PubMedGoogle Scholar
  94. 94.
    L. J. Libertini and E. W. Small, The intrinsic fluorescence of histone H1. Steady-state and fluorescence decay studies reveal heterogeneous emission, Biophys. J. 47, 765–772 (1985).PubMedGoogle Scholar
  95. 95.
    L. De Petrocelis, G. Quagliarotti, L. Tomei, and G. Geraci, Structuring of H1 histone. Evidence of high-affinity binding sites for phosphate ions, Eur. J. Biochem. 156, 143–148 (1986).Google Scholar
  96. 96.
    R. Amado, R. Aeschbach, and H. Neukom, Dityrosine: In vitro production and characterization Methods Enzymol. 107, 377–388 (1984).PubMedGoogle Scholar
  97. 97.
    R. Carallero, B. Fernandez, and F. Montero, Influence of carboxyl groups on conformation of histone H1 from Ceratitis capitata, Int. J. Pept. Protein Res. 30, 415–422 (1987).Google Scholar
  98. 98.
    J. Singh and M. R. S. Rao, Interaction of rat testis protein, TP, with nucleic acids in vitro, J. Biol. Chem. 262, 734–740 (1987).PubMedGoogle Scholar
  99. 99.
    C. Helene and G. Lancelot, Interactions between functional groups in protein-nucleic acid associations, Prog. Biophys. Mol. Biol. 39, 1–68 (1982).PubMedGoogle Scholar
  100. 100.
    D. G. Searcy, T. Montenay-Garestier, D. J. Laston, and C. Helene, Tyrosine environment and phosphate binding in the archaebacterial histone-like protein HTa, Biochim. Biophys. Acta 953, 321–333 (1988).Google Scholar
  101. 101.
    D. G. Searcy, T. Montenay-Garestier, and C. Helene, Phenylalanine-to-tyrosine energy transfer in the archaebacterial histone-like protein HTa, Biochemistry 28, 9058–9065 (1989).CrossRefPubMedGoogle Scholar
  102. 102.
    F. Brun, J. J. Toulme, and C. Helene, Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides, Biochemistry 14, 558–563 (1975).CrossRefPubMedGoogle Scholar
  103. 103.
    R. Mayer, F. Toulme, T. Montenay-Garestier, and C. Helene, The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides, J. Biol. Chem. 254, 75–82 (1979).PubMedGoogle Scholar
  104. 104.
    D. Porschke and J. Ronnenberg, The reaction of aromatic peptides with a double helical DNA. Quantitative characterization of a two step reaction scheme, Biophys. Chem. 13, 283–290 (1981).PubMedGoogle Scholar
  105. 105.
    T. Montenay-Garestier, M. Takasugi, and T. Le Doan, Fluorescence decay studies of peptide-nucleic acid complexes, in: Nucleic Acids: the Vectors of Life B. Pullman and J. Jortner, eds.), pp. 305–315, Reidel, Dordrecht (1983).Google Scholar
  106. 106.
    B. Lux, D. Gerard, and G. Laustriat, Tyrosine fluorescence of S8 and S15 Escherichia coli ribosomal proteins, FEBS Lett. 80, 66–70 (1977).CrossRefPubMedGoogle Scholar
  107. 107.
    F. Culard, M. Schnarr, and J. C. Maurizot, Interaction between the lac operator and the lac repressor headpiece: Fluorescence and circular dichroism studies, EMBO J. 1, 1405–1409 (1982).PubMedGoogle Scholar
  108. 108.
    M. Schnarr, M. Durand, and J. C. Maurizot, Nonspecific interaction of the lac repressor headpiece with deoxyribonucleic acid: Fluorescence and circular dichroism studies, Biochemistry 22, 3563–3570 (1983).CrossRefPubMedGoogle Scholar
  109. 109.
    H. T. Pretorius, M. Klein, and L. A. Day, Gene V protein of fd bacteriophage. Dimer formation and the role of tyrosyl groups in DNA binding, J. Biol. Chem. 250, 9262–9269 (1975).PubMedGoogle Scholar
  110. 110.
    T. Härd, V. Hsu, M. H. Sayre, E. P. Geiduschek, K. Appelt, and D. K. Kearns, Fluorescence studies of a single tyrosine in a type II DNA binding protein, Biochemistry 28, 396–407 (1989).PubMedGoogle Scholar
  111. 111.
    G. Lindberg, S. C. Kowalczykowski, J. K. Rist, A. Sugino, and L. B. Rothman-Denes, Purification and characterization of the coliphage N4-coded single-stranded DNA binding protein, J. Biol. Chem. 264, 12700–12708 (1989).PubMedGoogle Scholar
  112. 112.
    B. Lux, J. Baudier, and D. Gerard, Tyrosyl fluorescence spectra of proteins lacking tryptophan: Effects of intramolecular interactions, Photochem. Photobiol. 42, 245–251 (1985).PubMedGoogle Scholar
  113. 113.
    S. Forsen, H. J. Vogel, and T. Drakenberg, Biophysical studies of calmodulin, in: Calcium and Cell Function, Vol. VI W. Y. Cheung, ed.), pp. 113–157, Academic Press, New York (1986).Google Scholar
  114. 114.
    D. Malencik and S. R. Anderson, Dityrosine formation in calmodulin, Biochemistry 26, 695–704 (1987).CrossRefPubMedGoogle Scholar
  115. 115.
    K. B. Seamon, Calcium-and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance, Biochemistry 19, 207–215 (1980).CrossRefPubMedGoogle Scholar
  116. 116.
    M.-C. Kilhoffer, J. G. Demaille, and D. Gerard, Terbium as luminescent probe of calmodulin calcium-binding sites. Domains I and II contain the high-affinity sites, FEBS Lett. 116, 269–272 (1980).CrossRefPubMedGoogle Scholar
  117. 117.
    M.-C. Kilhoffer, D. Gerard, and J. G. Demaille, Terbium binding to octopus calmodulin provides the complete sequence of binding, FEBS Lett. 120, 99–103 (1980).CrossRefPubMedGoogle Scholar
  118. 118.
    M.-C. Kilhoffer, J. G. Demaille, and D. Gerard, Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength, Biochemistry 20, 4407–4414 (1981).CrossRefPubMedGoogle Scholar
  119. 119.
    K. P. Kohse and L. M. Heilmeyer, The effects of Mg2+ on the Ca2+-binding properties and Ca2+-induced tyrosine-fluorescence changes of calmodulin isolated from rabbit skeletal muscle, Eur. J. Biochem. 117, 507–513 (1981).PubMedGoogle Scholar
  120. 120.
    C. L. Wang, R. R. Aquaron, P. C. Leavis, and J. Gergely, Metal-binding properties of calmodulin, Eur. J. Biochem. 124, 7–12 (1982).CrossRefPubMedGoogle Scholar
  121. 121.
    R. W. Wallace, E. A. Tallant, M. E. Dockter, and W. Y. Cheung, Calcium binding domains of calmodulin. Sequence of fill as determined by terbium luminescence, J. Biol. Chem. 257, 1845–1854 1982PubMedGoogle Scholar
  122. 122.
    C. L. Wang, P. C. Leavis, and J. Gergely, Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin, Biochemistry 23, 6410–6415 (1984).PubMedGoogle Scholar
  123. 123.
    S. Pundak and R. S. Roche, Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: Calcium and pH dependence, Biochemistry 23, 1549–1555 (1984).CrossRefPubMedGoogle Scholar
  124. 124.
    P. K. Lambooy, R. F. Steiner, and H. Sternberg, Molecular dynamics of calmodulin as monitored by fluorescence anisotropy, Arch. Biochem. Biophys, 217, 517–528 (1982).CrossRefPubMedGoogle Scholar
  125. 125.
    R. F. Steiner, P. K. Lambooy, and H. Sternberg, The dependence of the molecular dynamics of calmodulin upon pH and ionic strength, Arch. Biochem. Biophys. 222, 158–169 (1983).CrossRefPubMedGoogle Scholar
  126. 126.
    R. F. Steiner and M. Montevalli-Alibadi, The determination of the separation of tyrosine-99 and tyrosine-138 in calmodulin: Radiationless energy transfer, Arch. Biochem. Biophys. 234, 522–530 (1984).CrossRefPubMedGoogle Scholar
  127. 127.
    I. Gryczynski, J. R. Lakowicz, and R. F. Steiner, Frequency-domain measurements of the rotational dynamics of the tyrosine groups of calmodulin, Biophys. Chem. 30, 49–59 (1988).PubMedGoogle Scholar
  128. 128.
    P. Bayley, S. Martin, and G. Jones, The conformation of calmodulin: A substantial environmentally sensitive helical transition in Ca4-calmodulin with potential mechanistic function, FEBS Lett. 238, 61–66 (1988).CrossRefPubMedGoogle Scholar
  129. 129.
    E. A. Burstein, E. A. Permyakov, V. I. Emelyanenko, T. L. Bushueva, and J.-F. Pechere, Investigation of some physico-chemical properties of muscular parvalbumins by means of the luminescence of their phenylalanyl residues, Biochim. Biophys. Acta 400, 1–16 (1975).PubMedGoogle Scholar
  130. 130.
    E. A. Permyakov, V. V. Yarmolenko, V. I. Ememlanenko, E. A. Burstein, J. Closset, and C. Gerday, Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin, Eur. J. Biochem. 109, 307–315 (1980).CrossRefPubMedGoogle Scholar
  131. 131.
    E. A. Permyakov, V. N. Medvedkin, L. P. Kalinichenko, and E. A. Burstein, Comparative study of physicochemical properties of two pike parvalbumins by means of their intrinsic tyrosyl and phenylalanyl fluorescence, Arch. Biochem. Biophys. 227, 9–20 (1983).CrossRefPubMedGoogle Scholar
  132. 132.
    E. A. Permyakov, A. V. Ostrovsky, E. A. Burstein, P. G. Pleshanov, and C. Gerday, Parvalbumin conformers revealed by steady-state and time-resolved fluorescence spectroscopy, Arch. Biochem. Biophys. 240, 781–791 (1985).CrossRefPubMedGoogle Scholar
  133. 133.
    R. H. Kretsinger and C. F. Nockolds, Carp muscle calcium-binding protein, J. Biol. Chem. 248, 3313–3326 (1973).PubMedGoogle Scholar
  134. 134.
    J. P. MacManus, D. C. Watson, and M. Yaguchi, The complete amino acid sequence of oncomodulin-a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc, Eur. J. Biochem. 136, 9–17 (1983).CrossRefPubMedGoogle Scholar
  135. 135.
    J. P. MacManus, A. G. Szabo, and R. E. Williams, Conformational changes induced by binding of bivalent cations to oncomodulin, a parvalbumin-like tumour protein, Biochem. J. 220, 261–268 (1984).PubMedGoogle Scholar
  136. 136.
    J. D. Johnson and J. D. Potter, Detection of two classes of Ca2+ binding sites in troponin C with circular dichroism and tyrosine fluorescence, J. Biol. Chem. 253, 3775–3777 (1978).PubMedGoogle Scholar
  137. 137.
    C. L. Wang, P. C. Leavis, W. D. Horrocks, and J. Gergely, Binding of lanthanides to troponin C, Biochemistry 20, 2439–2444 (1981).PubMedGoogle Scholar
  138. 138.
    P. C. Leavis and S. S. Lehrer, Intrinsic fluorescence studies on troponin C, Arch. Biochem. Biophys. 187, 243–251 (1978).CrossRefPubMedGoogle Scholar
  139. 139.
    Z. Grabarek, R.-Y. Tan, J. Wang, T. Tao, and J. Gergely, Inhibition of mutant troponin C activity by an intra-domain disulphide bond, Nature 345, 132–135 (1990).CrossRefPubMedGoogle Scholar
  140. 140.
    P. Kanellis, J. Yang, H. C. Cheung, and R. E. Lenkinski, Synthetic peptide analogs of skeletal troponin C: Fluorescence studies of analogs of the low-affinity calcium-binding site II, Arch. Biochem. Biophys. 220, 530–540 (1983).CrossRefPubMedGoogle Scholar
  141. 141.
    N. A. Malik, G. M. Anatharamaiah, A. Gawish, and H. C. Cheung, Structural and biological studies on synthetic peptide analogues of a low-affinity calcium-binding site of skeletal troponin C, Biochim. Biophys. Acta 911, 221–230 (1987).PubMedGoogle Scholar
  142. 142.
    D. M. E. Szebenyi, S. K. Obendorf, and K. Moffat, Structure of vitamin D-dependent calcium-binding protein from bovine intestine, Nature 294, 327–332 (1981).CrossRefPubMedGoogle Scholar
  143. 143.
    J. D. O’Neil, K. J. Dorrington, D. I. Kells, and T. Hoffmann, Fluorescence and circular dichroism properties of pig intestinal calcium-binding protein (Mr = 9000), a protein with a single tyrosine residue, Biochem. J. 207, 389–396 (1982).Google Scholar
  144. 144.
    D. M. E. Szebenyi and K. Moffat, The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine, J. Biol. Chem. 261, 8761–8777 (1986).PubMedGoogle Scholar
  145. 145.
    J. D. J. O’Neil and T. Hofmann, Tyrosine and tyrosinate fluorescence of pig intestinal Ca2+-binding protein, Biochem. J. 243, 611–615 (1987).Google Scholar
  146. 146.
    K. Chiba, T. Ohyashiki, and T. Mohri, Quantitative analysis of calcium binding to porcine intestinal calcium-binding protein, J. Biochem. (Tokyo) 93, 487–493 (1983).Google Scholar
  147. 147.
    K. Chiba, T. Ohyashiki, and T. Mohri, Stoichiometry and location of terbium and calcium binding to porcine intestinal calcium-binding protein, J. Biochem. (Tokyo) 95, 1767–1774 (1984).Google Scholar
  148. 148.
    J. D. O’Neil, K. J. Dorrington, and T. Hofmann, Luminescence and circular-dichroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000), Can. J. Biochem. Cell Biol. 62, 434–442 (1984).Google Scholar
  149. 149.
    R. Rigler, J. Roslund, and S. Forsen, Side chain mobility in bovine calbindin D9k, Eur. J.Biochem. 118, 541–545 (1990).Google Scholar
  150. 150.
    R. S. Mani, B. E. Boyes, and C. M. Kay, Physicochemical and optical studies on calcium-and potassium-induced conformational changes in bovine brain S-100b protein, Biochemistry 21, 2607–2612 (1982).CrossRefPubMedGoogle Scholar
  151. 151.
    J. Baudier and D. Gerard, The S-100b protein: Tyrosine residues do not exhibit an abnormal fluorescence spectrum, J. Neurochem. 40, 1765–1767 (1983).PubMedGoogle Scholar
  152. 152.
    J. Baudier and D. Gérard, Ions binding to S100 proteins: Structural changes induced by calcium and zinc on Sl00a and Sl00b proteins, Biochemistry 22, 3360–3369 (1983).CrossRefPubMedGoogle Scholar
  153. 153.
    J. Baudier, N. Glasser, and D. Gérard, Ions binding to S100 proteins, J. Biol. Chem. 261, 8192–8203 (1986).PubMedGoogle Scholar
  154. 154.
    J. Baudier and R. D. Cole, The Ca2+-binding sequence in bovine brain Sl00b protein β-subunit, Biochem. J. 264, 79–85 (1989).PubMedGoogle Scholar
  155. 155.
    Y. Mely and D. Gérard, Structural and ion-binding properties of an Sl00b protein mixed disulfide: Comparison with the reappraised native Sl00b protein properties, Arch. Biochem. Biophys. 279, 174–182 (1990).CrossRefPubMedGoogle Scholar
  156. 156.
    R. J. Turner, R. S. Roche, R. S. Mani, and C. M. Kay, Tyrosine and tyrosinate fluorescence of Sl00b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II), Biochem. Cell Biol. 67, 179–186 (1989).PubMedGoogle Scholar
  157. 157.
    P. V. Hauschka and S. A. Carr, Calcium-dependent alpha-helical structure in osteocalcin, Biochemistry 21, 2538–2547 (1982).PubMedGoogle Scholar
  158. 158.
    A. Filipek, C.W. Heizmann, and J. Kuznicki Calcyclin is a calcium and zinc binding protein, FEBS Lett. 264, 263–266 (1990).CrossRefPubMedGoogle Scholar
  159. 159.
    C. Pigault, A. Follénius-Wund, B. Lux, and D. Gérard, A fluorescence spectroscopy study of the calpactin I complex and its subunits p11 and p36: Calcium-dependent conformational changes, Biochim. Biophys. Acta 1037, 106–114 (1990).PubMedGoogle Scholar
  160. 160.
    R. S. Mani and C. M. Kay, Isolation and characterization of a novel molecular weight 11000 Ca2+-binding protein from smooth muscle, Biochemistry 29, 1398–1404 (1990).CrossRefPubMedGoogle Scholar
  161. 161.
    C. J. R. Thorne and N. O. Kaplan, Physicochemical properties of pig and horse heart mitochondrial malate dehydrogenase, J. Biol. Chem. 238, 1861–1868 (1963).PubMedGoogle Scholar
  162. 162.
    H. B. Otwell, A. Y.-H. Tan, and M. E. Friedman, Implication of a tyrosyl residue at the active site of mitochondrial l-Malate: NAD+ oxidoreductase, Biochim. Biophys. Acta 527, 309–318 (1978).PubMedGoogle Scholar
  163. 163.
    D. C. Wood, S. R. Jurgensen, J. C. Geesin, and J. H. Harrison, Subunit interactions in mitochondrial malate dehydrogenase, J. Biol. Chem. 256, 2377–2382 (1981).PubMedGoogle Scholar
  164. 164.
    J. Muller, M.-F. Manent, and G. Pfleiderer, Importance of tyrosine for structure and function of mitochondrial malate dehydrogenases, Biochim. Biophys. Acta 742, 189–196 (1983).PubMedGoogle Scholar
  165. 165.
    J. Walter and R. Huber, Pancreatic trypsin inhibitor. A new crystal form and its analysis, J. Mol. Biol. 167, 911–917 (1983).PubMedGoogle Scholar
  166. 166.
    A. Wlodawer, J. Walter, R. Huber, and L. Sjolin, Structure of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 180, 301–329 (1984).CrossRefPubMedGoogle Scholar
  167. 167.
    M. Karplus and J. A. McCammon, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9, 293–349 (1981).PubMedGoogle Scholar
  168. 168.
    K. Wüthrich, NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York (1986).Google Scholar
  169. 169.
    A. Kasprzak and G. Weber, Fluorescence depolarization and rotational modes of tyrosine in bovine pancreatic trypsin inhibitor, Biochemistry 21, 5924–5927 (1982).CrossRefPubMedGoogle Scholar
  170. 170.
    J. R. Lakowicz and B. Maliwal, Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins, J. Biol. Chem. 258, 4794–4801 (1983).PubMedGoogle Scholar
  171. 171.
    J. R. Lakowicz, G. Laczko, and I. Gryczynski, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26, 82–90 (1987).CrossRefPubMedGoogle Scholar
  172. 172.
    T. M. Nordlund, X.-Y. Liu, and J. H. Sommer, Fluorescence polarization decay of tyrosine in lima bean trypsin inhibitor, Proc. Natl. Acad. Sci. U.S.A. 83, 8977–8981 (1986).PubMedGoogle Scholar
  173. 173.
    X.-Y. Liu, K. O. Cottrell, and T. M. Nordlund, Spectroscopy and fluorescence quenching of tyrosine in lima bean trypsin/chymotrypsin inhibitor and model peptides, Photochem. Photobiol. 50, 721–731 (1989).PubMedGoogle Scholar
  174. 174.
    S. S. Sur, L. D. Rabbani, L. Libman, and E. Breslow, Fluorescence studies of native and modified neurophysins. Effects of peptides and pH, Biochemistry 18, 1026–1036 (1979).CrossRefPubMedGoogle Scholar
  175. 175.
    M. Rholam and P. Nicolas, Conformational flexibility of neurophysin as investigated by local motions of fluorophores. Relationships with neurohypophyseal hormone binding, Biochemistry 24, 1928–1933 (1985).PubMedGoogle Scholar
  176. 176.
    M. Rholam, S. F. Scarlata, and P. Nicolas, Conformational flexibility of neurophysin as investigated by local motions of fluorophores. Relationships with neurohypophyseal hormone binding, Biochemistry 24, 7853 (1985).Google Scholar
  177. 177.
    S. F. Scarlata and C. A. Royer, Ligand-induced asymmetry as observed through fluorophore rotations and free energy couplings: Application to neurophysin, Biochemistry 25, 4925–4929 (1986).CrossRefPubMedGoogle Scholar
  178. 178.
    N. Barboy and J. Feitelson, Fluorescence lifetime study of the denaturation of ribonuclease A, Photochem. Photobiol. 26, 561–565 (1977).PubMedGoogle Scholar
  179. 179.
    J.-R. Garel and R. L. Baldwin, Both the fast and slow refolding reactions of ribonuclease A yield native enzyme, Proc. Natl. Acad. Sci. U.S.A. 70, 3347–3351 (1973).PubMedGoogle Scholar
  180. 180.
    P. J. Hagerman, B. T. Nall, and R. L. Baldwin, A quantitative treatment of the kinetics of the folding of ribonuclease A, Biochemistry 15, 1462–1473 (1976).CrossRefPubMedGoogle Scholar
  181. 181.
    F. X. Schmid, A native-like intermediate on the ribonuclease A folding pathway. 1. Detection by tyrosine fluorescence changes, Eur. J. Biochem. 114, 105–109 (1981).PubMedGoogle Scholar
  182. 182.
    A. Rehage and F. X. Schmid, Fast-and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence, Biochemistry 21, 1499–1505 (1982).CrossRefPubMedGoogle Scholar
  183. 183.
    F. X. Schmid, R. Grafl, A. Wrba, and J. J. Beintema, Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease, Proc. Natl. Acad. Sci. U.S.A. 83, 872–876 (1986).PubMedGoogle Scholar
  184. 184.
    P. W. Mui, Y. Konishi, and H. A. Scheraga, Kinetics and mechanism of the refolding of ribonuclease A, Biochemistry 24, 4481–4489 (1985).CrossRefPubMedGoogle Scholar
  185. 185.
    H. Krebs, F. X. Schmid, and R. Jaenicke, Native-like folding intermediates of homologous ribonucleases, Biochemistry 24, 3846–3852 (1985).CrossRefPubMedGoogle Scholar
  186. 186.
    E. Haas, G. T. Montelione, C. A. McWherter, and H. A. Scheraga, Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements, Biochemistry 26, 1672–1683 (1987).CrossRefPubMedGoogle Scholar
  187. 187.
    A. Tulinsky, R. L. Vandlen, C. N. Morimoto, N. V. Mani, and L. H. Wright, Variability in the tertiary structure of α-chymotrypsin; at 2.8-Å resolution, Biochemistry 12, 4185–4192 (1973).CrossRefPubMedGoogle Scholar
  188. 188.
    C. R. Coan, L. M. Hinman, and D. A. Deranleau, Charge-transfer studies of the availability of aromatic side chains of proteins in guanidine hydrochloride, Biochemistry 14, 4421–4427 (1974).Google Scholar
  189. 189.
    J. B. Massey and H. J. Pownall, Spectroscopic studies of the tyrosine residues of human plasma apolipoprotein A-II, Biochim. Biophys. Acta 999, 111–120 (1989).PubMedGoogle Scholar
  190. 190.
    R. B. Weinberg and M. K. Jordan, Effects of phospholipid on the structure of human apolipoprotein A-IV J. Biol. Chem. 265, 8081–8086 (1990).PubMedGoogle Scholar
  191. 191.
    P. W. Schiller, Application of fluorescence techniques in studies of peptide conformations and interactions, in: The Peptides, Vol. 7 S. Udenfriend, ed., pp. 115–164, Academic Press, New York (1985).Google Scholar
  192. 192.
    S. P. Wood, I. J. Tickle, A. M. Treharne, J. E. Pitts, Y. Mascarenhas, J. Y. Li, J. Husain, S. Cooper, T. L. Blundell, V. J. Hruby, A. Buku, A. J. Fischman, and H. R. Wyssbrod, Crystal structure of deamino-oxytocin: Conformational flexibility and receptor-binding, Science 232, 633–636 (1986).PubMedGoogle Scholar
  193. 193.
    J. R. Lakowicz, G. Laczko, and I. Gryczynski, Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry, Biophys. Chem. 24, 97–100 (1986).CrossRefPubMedGoogle Scholar
  194. 194.
    S. S. Lehrer and G. D. Fasman, Excimer fluorescence in lipid phenol, p-ethylphenol, and anisole, J. Am. Chem. Soc. 87, 4687–4691 (1965).CrossRefPubMedGoogle Scholar
  195. 195.
    S. N. Khrapunov and A. I. Dragan, Spectroscopy of molecular interactions of tyrosine chromophore. III. Classification of the state of tyrosine residues in protein composition according to their electronic spectra, Biofizika 34, 357–363 (1989).Google Scholar
  196. 196.
    T. C. M. Eames, R. M. Pollack, and R. F. Steiner, Orientation, accessibility, and mobility of equilenin bound to the active site of steroid isomerase, Biochemistry 28, 6269–6275 (1989).CrossRefPubMedGoogle Scholar
  197. 197.
    R. F. Chen, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1, 35–42 (1967).Google Scholar
  198. 198.
    K. J. Willis, A. G. Szabo, and D. T. Krajcarski, The use of Stokes Raman scattering in time correlated single photon counting: Application to the fluorescence lifetime of tyrosinate, Photochem. Photobiol. 51, 375–377 (1990).PubMedGoogle Scholar
  199. 199.
    J. L. Cornog and W. R. Adams, The fluorescence of tyrosine in alkaline solution, Biochim. Biophys. Acta 66, 356–365 (1963).CrossRefPubMedGoogle Scholar
  200. 200.
    H. Edelhoch, Spectroscopic determination of tryptophan and tyrosine in proteins, Biochemistry 6, 1948–1954 (1967).PubMedGoogle Scholar
  201. 201.
    W. R. Laws and J. D. Shore, Spectral evidence for tyrosine ionization linked to a conformational change in liver alcohol dehydrogenase ternary complexes, J. Biol. Chem. 254, 2582–2584 (1979).PubMedGoogle Scholar
  202. 202.
    S. Subramanian, J. B. A. Ross, L. Brand, and P. D. Ross, Investigation of the nature of enzyme-coenzyme interactions in binary and ternary complexes of liver alcohol dehydrogenase with coenzymes,coenzyme analogs, and substrate analogs by ultraviolet absorption and phosphorescence spectroscopy, Biochemistry 20, 4086–4093 (1981).PubMedGoogle Scholar
  203. 203.
    T. Kimura and J. J. Ting, Anomalous tyrosine emission at 331 nm in adrenal two iron and two labile-sulfur protein (adrenodoxin): A possible tyrosine exciplex, Biochem. Biophys. Res. Commun. 45, 1227–1231 (1971).CrossRefPubMedGoogle Scholar
  204. 204.
    T. Kimura, J. J. Ting, and J. J. Huang, Studies on adrenal steroid hydroxylases. Anomalous fluorescence of a tyrosyl residue in adrenal iron-sulfur protein (adrenodoxin), J. Biol. Chem. 247, 4476–4479 (1972).PubMedGoogle Scholar
  205. 205.
    B. T. Lim and T. Kimura, Conformation-associated anomalous tyrosine fluorescence of adrenodoxin, J. Biol. Chem. 255, 2440–2444 (1980).PubMedGoogle Scholar
  206. 206.
    B. T. Lim and T. Kimura, Conformational prediction and spectral studies on adrenodoxin. The accessibility of the tyrosine at position 82 in the polypeptide, J. Biol. Chem. 256, 4400–4406 (1981).PubMedGoogle Scholar
  207. 207.
    E. Bicknell-Brown, B. T. Lim, and T. Kimura, Laser Raman spectroscopy of adrenal iron-sulfur apoprotein: The anomalous tyrosine residue at position 82, Biochem. Biophys. Res. Commun. 101, 298–305 (1981).PubMedGoogle Scholar
  208. 208.
    M. T. Graziani, A. F. Agro, G. Rotilio, D. Barra, and B. Mondovi, Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment, Biochemistry 13, 804–809 (1974).CrossRefPubMedGoogle Scholar
  209. 209.
    F. G. Prendergast, P. D. Hampton, and B. Jones, Characteristics of tyrosinate fluorescence emission in α-and β-purothionins, Biochemistry 23, 6690–6697 (1984).CrossRefPubMedGoogle Scholar
  210. 210.
    C. M. L. Hutnik, J. P. MacManus, D. Banville, and A. G. Szabo, Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102, J. Biol. Chem. 265, 11456–11464 (1990).PubMedGoogle Scholar
  211. 211.
    R. J. Turner, J. M. Matsoukas, and G. J. Moore, Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: Relationship to biological activity and 1H-NMR data, Biochem. Biophys. Res. Commun. 171, 996–1001 (1990).CrossRefPubMedGoogle Scholar
  212. 212.
    J. Longworth, A new component in protein fluorescence, Ann. N.Y. Acad. Sci. 366, 237–245 (1981).PubMedGoogle Scholar
  213. 213.
    S. F. Pearce and E. Hawrot, Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: Perturbations produced upon binding α-bungarotoxin, Biochemistry 29, 10649–10659 (1990).CrossRefPubMedGoogle Scholar
  214. 214.
    A. G. Szabo, K. R. Lynn, D. T. Krajcarski, and D. M. Rayner, Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7, FEBS Lett. 94, 249–252 (1978).CrossRefPubMedGoogle Scholar
  215. 215.
    A. H. Maki and J. Zuclich, Protein triplet states, Top. Curr. Chem. 54, 115–163 (1975).PubMedGoogle Scholar
  216. 216.
    A. L. Kwiram and J. B. A. Ross, Optical detection of magnetic resonance in biologically important molecules, Annu. Rev. Biophys. Bioeng. 11, 223–249 (1982).CrossRefPubMedGoogle Scholar
  217. 217.
    N. Shaklai, N. Zisapel, and M. Sokolovsky, The role of a tyrosyl residue in the mechanism of action of carboxypeptidase B: Luminescence studies, Proc. Natl. Acad. Sci. U.S.A. 70, 2025–2028 (1973).PubMedGoogle Scholar
  218. 218.
    N. Zisapel, N. Shaklai, and M. Sokolovsky, Metal-tyrosyl interaction in carboxypeptidase: Phosphorescence studies, FEBS Lett. 51, 262–265 (1975).CrossRefPubMedGoogle Scholar
  219. 219.
    K. Ugurbil, A. H. Maki, and R. Bersohn, Study of the triplet state properties of tyrosines and tryptophan in azurins using optically detected magnetic resonance, Biochemistry 16, 901–907 (1977).PubMedGoogle Scholar
  220. 220.
    J. B. A. Ross, K. W. Rousslang, C. DeHaen, V. R. Lavis, and D. A. Deranleau, [12-Homoarginine]glucagon: Synthesis and observations on conformation, biological activity, and copper-mediated peptide cleavage, Biochim. Biophys. Acta 576, 372–384 (1979).PubMedGoogle Scholar
  221. 221.
    R. M. Levy and A. Szabo, Initial fluorescence depolarization of tyrosines in proteins, J. Am. Chem. Soc. 104, 2073–2075 (1982).Google Scholar
  222. 222.
    R. M. Levy and R. P. Sheridan, Combined effect of restricted rotational diffusion plus jumps on nuclear magnetic resonance and fluorescence probes of aromatic ring motions in proteins, Biophys. J. 41, 217–221 (1983).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. B. Alexander Ross
    • 1
  • William R. Laws
    • 1
  • Kenneth W. Rousslang
    • 2
  • Herman R. Wyssbrod
    • 3
  1. 1.Department of BiochemistryMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of ChemistryUniversity of Puget SoundTacomaUSA
  3. 3.Department of ChemistryUniversity of LouisvilleLouisvilleUSA

Personalised recommendations