Advertisement

Parallelization of an Airline Flight-Scheduling Module on a Sci-Coupled NUMA Shared Memory Cluster

  • Marcus Dormanns
  • Stefan Lankes
  • Thomas Bemmerl
  • Georg Bolz
  • Erik Pfeiffle
Part of the The International Series in Engineering and Computer Science book series (SECS, volume 541)

Abstract

This paper reports about the parallelization of a module of a commercial airline flight-scheduling decision support system. The primary target platfom for this effort was a cluster of SCI-interconnected PCs. SCI’s capability that enables a shared data programming model was one of the major arguments for this platform, besides the fact that Windows NT operated PCs become more and more important even for professional enterprise computing. Two additional platforms have been considered for evaluation purposes: a HP/Convex SPP1200, the current parallel computing platform at Lufthansa Systems, as well as a 6-processor ALR PC server. The results are very promising in that it could be demonstrated that PCs are highly competitive in terms of absolute sequential performance and that the parallelized flight-scheduling module scales considerably better on the SCI-clustered PCs than on the ALR and even on the high-end HP/Convex multiprocessor.

Keywords

NUMA shared memory application parallelization cluster computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abandah, G. A.; Davidson, E. S. (1998). Characterizing Shared Memory and Communication Performance: A Case Study of the Convex SPP-1000. IEEE Trans. on Par. and Distrib. Systems, Vol. 9, No. 2, pp. 206–216.Google Scholar
  2. Abandah, G. A.; Davidson, E. S. (1998). Effects of Architectural and Technological Advances on the HP/Convex Exemplar’s Memory and Communication Performance. Proc. 25th Int. Symp. on Comp. Architecture (ISCA), ACM Comp. Arch. News, Vol. 26, No. 3, pp. 318–329.Google Scholar
  3. ALR (1996). ALR Revolution 6x6 Six-way SMP Architecture. White Paper.Google Scholar
  4. Dagum, L.; Menon, R. (1998). OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comp. Sci. & Engin., Vol. 5, No. 1, pp. 46–55.Google Scholar
  5. Dolphin Interconnect Solutions(1996). PCI-SCI Cluster Adapter Specification. White Paper, http://www.dolphinics.no
  6. Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T. (1997). Performance Potential of an SCI Workstation Cluster for Grid-Based Scientific Computing. Proc. High Perf. Computing (HPC), pp. 226–231.Google Scholar
  7. Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T. (1997a). A Programming Interface for NUMA Shared-Memory Clusters. Proc. High Performance Computing and Networking (HPCN), pp. 608–707, LNCS 1225, Springer.Google Scholar
  8. Dormanns, M. (1998). Shared-Memory Parallelization of the GROMOS96 Molecular Dynamics Code on a SCI-Coupled NUMA Cluster. Proc. SCI-Europe Conference (held as a stream of EMMSEC’98) pp. 111–122, France.Google Scholar
  9. Eberl, M.; Hellwagner, H.; Karl, W.; Leberecht, M.; Weidendorfer, J. (1998). Fast Communication Libraries on a SCI Cluster. Proc. SCI-Europe Conference (held as a stream of EMMSEC’98), pp. 159–164, France.Google Scholar
  10. Huse, L. P.; Omang, K. (1997). Large Scientific Calculations on Dedicated Clusters of Workstations. Int. Conf. on Par. and Distr. Systems, Euro-PDS.Google Scholar
  11. IEEE (1992). ANSI/IEEE Std. 1596–1992, Scalable Coherent Interface (SCI).Google Scholar
  12. Kleiman, S.; Shah, D.; Smaalders, B.(1996). Programming with Threads. Prentice Hall.Google Scholar
  13. McCalpin, J. D (1995). A Survey of Memory Bandwidth and Machine Balance in Current High Performance Computers. IEEE TCCA Newsletter, Dec.Google Scholar
  14. Mukherjee, S.S.; Hill, M.D. (1998). Making Network Interface Less Peripheral. IEEE Computer, Vol. 3, No. 10, pp. 70–76.Google Scholar
  15. Paas, S. M.; Dormanns, M.; Bemmerl, T.; Scholtyssik, K.; Lankes, S. (1997). Computing on a Cluster of PCs: Project Overview and Early Experiences. 1st Workshop Cluster-Computing, published as Technical Report CSR-97-05, Dept, of Comp. Science, TU Chemnitz, Germany, pp. 217–229.Google Scholar
  16. Pfister, G. F. (1995). In Search of Clusters. Prentice Hall.Google Scholar
  17. Sinnen, O. (1997). Loop-Scheduling and-Splitting Methodologies on NUMA Multiprocessors. Diploma thesis (in German), Lehrstuhl für Betriebssysteme, RWTH Aachen.Google Scholar
  18. Stroustrup, B. (1997). The C++ Programming Language, Third Edition. Addison-Wesley.Google Scholar
  19. Tholen, S. (1998). Studies of the parallelization of simulation algorithms for room acoustics. Diploma Thesis (in German), Lehrstuhl für Betriebssysteme, RWTH Aachen.Google Scholar
  20. Yan, Y.; Jin, C.; Zhang, X. (1997). Adaptive Scheduling Parallel Loops in Shared Memory Systems. IEEE Trans. on Par. and Distrib. Systems, Vol. 8, No. 1, pp. 70–81.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Marcus Dormanns
    • 1
  • Stefan Lankes
    • 1
  • Thomas Bemmerl
    • 1
  • Georg Bolz
    • 2
  • Erik Pfeiffle
    • 2
  1. 1.Lehrstuhl für BetriebssystemeRWTH Aachen Kopernikusstr. 16AachenGermany
  2. 2.Lufthansa Systems, Decision Support SystemsFrankfurt airport CenterFrankfurtGermany

Personalised recommendations