Advertisement

Representation of Signals and Systems in Simulation

Analytic Fundamentals
Part of the Information Technology: Transmission, Processing, and Storage book series (PSTE)

Keywords

Impulse Response Discrete Fourier Transform Sinc Function Complex Envelope Analytic Fundamental 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Papoulis, Signal Analysis, McGraw-Hill, New York (1977).Google Scholar
  2. 2.
    A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1983).Google Scholar
  3. 3.
    R. E. Ziemer, W. H. Tranter, and D. R. Fannina, Signals and Systems Continuous and Discrete, Macmillan, New York (1983).Google Scholar
  4. 4.
    R. J. Schwarz and B. Friedland, Linear Systems, McGraw-Hill, New York (1965).Google Scholar
  5. 5.
    C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis, Holt, Rinehart and Winston, New York (1974).Google Scholar
  6. 6.
    R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 2nd ed., Wiley New York (1980).Google Scholar
  7. 7.
    A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York (1962).Google Scholar
  8. 8.
    R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, New York (1978).Google Scholar
  9. 9.
    H. Urkowitz, Signal theory and Random Processes, Artech House, Dedham, Massachusetts (1983).Google Scholar
  10. 10.
    A. D. Whalen, Detection of Signals in Noise, Academic Press, New York (1971).Google Scholar
  11. 11.
    M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques, McGraw-Hill, New York (1966).Google Scholar
  12. 12.
    K. S. Shanmugan, Digital and Analog Communication Systems, Wiley, New York (1979).Google Scholar
  13. 13.
    A. J. Jerri, The Shannon sampling theorem—Its various extensions and applications; A tutorial review, Proc. IEEE 65(11), 1565–1596 (1997).Google Scholar
  14. 14.
    A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, Florida (1993).Google Scholar
  15. 15.
    J. G. Proakis, Digital Communications, 2nd ed., McGraw-Hill, New York (1989).Google Scholar
  16. 16.
    S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Englewood Cliffs, New Jersey (1987).Google Scholar
  17. 17.
    R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, Houghton Mifflin, Boston (1976).Google Scholar
  18. 18.
    R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey (1983).Google Scholar
  19. 19.
    A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey (1989).Google Scholar
  20. 20.
    P. J. Davis, Interpolation and Approximation, Dover, New York (1975).Google Scholar
  21. 21.
    T. J. Rivlin, An Introduction to the Approximation of Functions, Dover, New York (1981).Google Scholar
  22. 22.
    J. E. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York (1967).Google Scholar
  23. 23.
    C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York (1978).Google Scholar
  24. 24.
    W. Gautschi, Numerical Analysis, Birkhaüser, Boston (1997).Google Scholar
  25. 25.
    J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York (1980).Google Scholar
  26. 26.
    A. Papoulis, Circuits and Systems, Holt, Rinehart and Winston, New York (1980).Google Scholar
  27. 27.
    L. Weinberg, Network Analysis and Synthesis, McGraw-Hill, New York (1962).Google Scholar
  28. 28.
    G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation with a Table of Laplace Transformations, Springer-Verlag, Berlin (1974).Google Scholar
  29. 29.
    E. I. Jury, Theory and Application of the z-Transform Method, Wiley, New York (1964).Google Scholar
  30. 30.
    A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey (1977).Google Scholar
  31. 31.
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New Jersey (1974).Google Scholar
  32. 32.
    R. C. Singleton, An algorithm for computing the mixed radix fast Fourier transform, IEEE Trans. Audio Electroacoust. AU-17(2), 93–103 (1969).Google Scholar
  33. 33.
    L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey (1975).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations