Nonstationary Stochastic Dynamics and Applications to Chemical Physics

  • Rigoberto Hernandez
  • Frank L. SomerJr.
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 5)

Abstract

A new approach to understanding nonstationary processes has recently been developed through the use of the so-called irreversible generalized Langevin equation (iGLE). The iGLE model can accommodate nonstationary changes in temperature and the friction strength of the environment. These changes may be coupled to macroscopic averages of the environment as induced by the collective motion of many equivalent tagged particles. As these environments may not be identical, the WiGLE model has also been developed, and it accounts for heterogeneous environments, each of which is coupled to a set of w neighbors. Possible applications of these models include the chemical reaction dynamics of thermosetting polymers and living polymers, and the folding dynamics of proteins.

Keywords

stochastic dynamics generalized Langevin equation nonstationary and colored friction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. A. Kramers, Physica 7, 284 (1940).CrossRefGoogle Scholar
  2. [2]
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).CrossRefGoogle Scholar
  3. [3]
    R. Zwanzig, in Lectures in Theoretical Physics (Boulder), edited by W. E. Britton, B. W. Downs, and J. Downs (Wiley-Interscience, New York, 1961), Vol. 3, p. 135.Google Scholar
  4. [4]
    J. Prigogine and P. Resibois, Physica 27, 629 (1961).Google Scholar
  5. [5]
    G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).CrossRefGoogle Scholar
  6. [6]
    H. Mori, Prog. Theor. Phys. 33, 423 (1965).Google Scholar
  7. [7]
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990), and references therein.Google Scholar
  8. [8]
    R. Brown, Philos. Mag. 4, 161 (1828), 6, 161 (1829).Google Scholar
  9. [9]
    A. Einstein, Ann. Phys. 17, 549 (1905), 19, 371 (1906).Google Scholar
  10. [10]
    P. Langevin, Comptes Rednus de l’Acacemie de Sciences (Paris) 146, 530 (1908).Google Scholar
  11. [11]
    N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, New York, 1981).Google Scholar
  12. [12]
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986).Google Scholar
  13. [13]
    R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980).CrossRefGoogle Scholar
  14. [14]
    S. A. Adelman, Adv. Chem. Phys. 53, 61 (1983).Google Scholar
  15. [15]
    J. T. Hynes, in Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC, Boca Raton, FL, 1985), Vol. 4, p. 171.Google Scholar
  16. [16]
    J. T. Hynes, Annu. Rev. Phys. Chem. 36, 573 (1985).CrossRefGoogle Scholar
  17. [17]
    A. Nitzan, Adv. Chem. Phys. 70, 489 (1988).Google Scholar
  18. [18]
    B. J. Berne, M. Borkovec, and J. E. Straub, J. Chem. Phys. 92, 3711 (1988).Google Scholar
  19. [19]
    S. C. Tucker, M. E. Tuckerman, B. J. Berne, and E. Pollak, J. Chem. Phys. 95, 5809 (1991).CrossRefGoogle Scholar
  20. [20]
    S. C. Tucker, J. Phys. Chem. 97, 1596 (1993).CrossRefGoogle Scholar
  21. [21]
    E. Pollak, in Dynamics of Molecules and Chemical Reactions, edited by R. E. Wyatt and J. Zhang (Marcel Dekker, New York, 1996).Google Scholar
  22. [22]
    R. Hernandez and F. L. Somer, J. Phys. Chem. B 103, 1064 (1999).Google Scholar
  23. [23]
    R. Hernandez and F. L. Somer, J. Phys. Chem. B 103, 1070 (1999).Google Scholar
  24. [24]
    J. Keizer, J. Chem. Phys. 64, 1679 (1976).Google Scholar
  25. [25]
    G. C. Schatz, Computers Phys. 31, 295 (1978).Google Scholar
  26. [26]
    G. C. Schatz, J. Chem. Phys. 73, 2792 (1980).Google Scholar
  27. [27]
    C. C. Martens, Phys. Rev. A 45, 6914 (1992).Google Scholar
  28. [28]
    R. Hernandez, J. Chem. Phys. 110, 7701 (1999).CrossRefGoogle Scholar
  29. [29]
    F. L. Somer and R. Hernandez, J. Phys. Chem. A 103, 11004 (1999).Google Scholar
  30. [30]
    F. L. Somer and R. Hernandez, J. Phys. Chem. B 104, 3456 (2000).Google Scholar
  31. [31]
    K. Lindenberg and V. Seshadri, Physica A 109, 483 (1981).Google Scholar
  32. [32]
    B. Carmeli and A. Nitzan, Chem. Phys. Lett. 102, 517 (1983).CrossRefGoogle Scholar
  33. [33]
    K. Lindenberg and E. Cortés, Physica A 126, 489 (1984).Google Scholar
  34. [34]
    R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).Google Scholar
  35. [35]
    H. Metiu, D. Oxtoby, and K. F. Freed, Phys. Rev. A 15, 361 (1977).Google Scholar
  36. [36]
    J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 83, 3172 (1985).Google Scholar
  37. [37]
    J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 84, 1788 (1986)CrossRefGoogle Scholar
  38. [38]
    R. Zwanzig, Phys. Rev. 124, 983 (1961).CrossRefGoogle Scholar
  39. [39]
    R. Zwanzig, J. Stat. Phys. 9, 215 (1973).CrossRefGoogle Scholar
  40. [40]
    A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981), Ann. Phys. (New York) 149, 374 (1983).CrossRefGoogle Scholar
  41. [41]
    E. Cortés, B. J. West, and K. Lindenberg, J. Chem. Phys. 82, 2708 (1985).Google Scholar
  42. [42]
    E. Pollak, J. Chem. Phys. 85, 865 (1986).CrossRefGoogle Scholar
  43. [43]
    A. M. Levine, M. Shapiro, and E. Pollak, J. Chem. Phys. 88, 1959 (1988).Google Scholar
  44. [44]
    B. J. Gertner, J. P. Bergsma, K. R. Wilson, S. Lee, and J. T. Hynes, J. Chem. Phys. 86, 1377 (1987).CrossRefGoogle Scholar
  45. [45]
    E. Pollak, J. Chem. Phys. 86, 3944 (1987).Google Scholar
  46. [46]
    H. Risken, The Fokker-Planck Equation (Springer-Verlag, New York, 1989).Google Scholar
  47. [47]
    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, New York, 1992).Google Scholar
  48. [48]
    K. Lindenberg, K. E. Shuler, V. Seshadri, and B. J. West, in Probabilistic Analysis and Related Topics, edited by A. T. Bharucha-Reid (Academic Press, New York, 1983), Vol. 3, pp. 81–125.Google Scholar
  49. [49]
    R. Kubo, Rep. Prog. Theor. Phys. 29, 55 (1966).Google Scholar
  50. [50]
    E. P. Wigner, Ann. Math. 53, 36 (1951), 62, 548 (1955); 65, 203 (1957); 67, 325 (1958).CrossRefGoogle Scholar
  51. [51]
    F. J. Dyson, J. Math. Phys. 3, 1199 (1962).Google Scholar
  52. [52]
    M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967).Google Scholar
  53. [53]
    P. J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).Google Scholar
  54. [54]
    W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).Google Scholar
  55. [55]
    P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
  56. [56]
    P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).Google Scholar
  57. [57]
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
  58. [58]
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
  59. [59]
    K. E Freed, Renormalization Group Theory of Macromolecules (Wiley-Interscience, New York, 1987).Google Scholar
  60. [60]
    M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes (Wiley-Interscience, New York, 1968).Google Scholar
  61. [61]
    M. Szwarc and M. Van Beylen, Ionic Polymerization and Living Polymers (Chapman & Hall, New York, 1993).Google Scholar
  62. [62]
    S. C. Greer, Adv. Chem. Phys. 94, 261 (1996).Google Scholar
  63. [63]
    A. V. Tobolsky and A. J. Eisenberg, J. Colloid Sci. 17, 49 (1962).Google Scholar
  64. [64]
    P. G. de Gennes, Phys. Lett. 38A, 339 (1972).Google Scholar
  65. [65]
    J. des Cloiseaux, J. Phys. (Paris) 36, 281 (1975).Google Scholar
  66. [66]
    J. C. Wheeler and P. M. Pfeuty, Phys. Rev. A 24, 1050 (1981).Google Scholar
  67. [67]
    R. L. Scott, J. Phys. Chem. 69, 261 (1965).Google Scholar
  68. [68]
    S. J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78, 953 (1983).Google Scholar
  69. [69]
    L. R. Corrales and J. C. Wheeler, J. Chem. Phys. 90, 5030 (1989).CrossRefGoogle Scholar
  70. [70]
    K. M. Zheng, S. C. Greer, L. R. Corrales, and J. Ruiz-Garcia, J. Chem. Phys. 98, 9873 (1993).CrossRefGoogle Scholar
  71. [71]
    A. Milchev, Polymer 34, 362 (1993).CrossRefGoogle Scholar
  72. [72]
    A. Milchev and D. P. Landau, Phys. Rev. Eb 52, 6431 (1995).Google Scholar
  73. [73]
    Reaction Polymers, edited by W. E Gum, W. Riese, and H. Ulrich (Oxford Univeristy Press, New York, 1992).Google Scholar
  74. [74]
    P. J. Prepelkaand J. L. Wharton, J. Cellular Plastics 11, 87 (1975).Google Scholar
  75. [75]
    L. J. Lee, Rubber Chem. Tech 53, 542 (1980).Google Scholar
  76. [76]
    J. M. Castro, S. D. Lipshitz, and C. W. Macosko, AIChE J. 26, 973 (1982).Google Scholar
  77. [77]
    S. A. Jabarin and E. A. Lofgren, J. Appl. Polym. Sci. 32, 5315 (1986).CrossRefGoogle Scholar
  78. [78]
    P. Desai and A. S. Abhiraman, J. Polym. Sci. B 26, 1657 (1988).Google Scholar
  79. [79]
    R. Akki, S. Bair, and A. S. Abhiraman, Polym. Eng. Sci. 35, 1781 (1995).CrossRefGoogle Scholar
  80. [80]
    B. O’Shaughnessy, Phys. Rev. Lett. 71, 3331 (1993).Google Scholar
  81. [81]
    B. O’Shaughnessy and J. Yu, Phys. Rev. Lett. 73, 1723 (1994).Google Scholar
  82. [82]
    E. Trommsdorff, H. Köhle, and P. Lagally, Makromol. Chem. 1, 169 (1948).CrossRefGoogle Scholar
  83. [83]
    S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965)Google Scholar
  84. [84]
    S. F. Edwards, Natl. Bur. Stand. (U.S.) Misc. Publ. 273, 225 (1965).Google Scholar
  85. [85]
    K. F. Freed, Adv. Chem. Phys. 22, 1 (1972).Google Scholar
  86. [86]
    R. Zwanzig, A. Szabo, and B. Bachi, Proc. Natl. Acad. Sci. USA 89, 20 (1992).Google Scholar
  87. [87]
    R. Zwanzig, Proc. Natl. Acad. Sci. USA 92, 9801 (1995).Google Scholar
  88. [88]
    N. D. Socci, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys. 104, 5860 (1996).CrossRefGoogle Scholar
  89. [89]
    J. Wang, J. Onuchic, and P. Wolynes, Phys. Rev. Lett. 76, 4861 (1996).Google Scholar
  90. [90]
    S. S. Plotkin, J. Wang, and P. Wolynes, J. Chem. Phys. 106, 2932 (1997).CrossRefGoogle Scholar
  91. [91]
    D. Klimov and D. Thirumalai, Phys. Rev. Lett. 79, 317 (1997).CrossRefGoogle Scholar
  92. [92]
    S. S. Plotkin and P. G. Wolynes, Phys. Rev. Lett. 80, 5015 (1998).CrossRefGoogle Scholar
  93. [93]
    P. X. Qi, T. R. Sosnick, and S. W. Englander, Nature 5, 882 (1998).Google Scholar
  94. [94]
    R. P. Bhattacharyya and T. R. Sosnick, Nature 5, 882 (1998).Google Scholar
  95. [95]
    D. J. Bicout and A. Szabo, Protein Sci 9, 452 (2000).Google Scholar
  96. [96]
    J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).CrossRefGoogle Scholar
  97. [97]
    S. C. Tucker, in New Trends in Kramers’ Reaction Rate Theory, edited by P. Hänggi and P. Talkner (Kluwer Academic, The Netherlands, 1995), pp. 5–46.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rigoberto Hernandez
    • 1
  • Frank L. SomerJr.
    • 2
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlanta
  2. 2.Department of ChemistrySt. John’s UniversityJamaica

Personalised recommendations