Feynman Path Centroid Dynamics

  • Gregory A. Voth

Abstract

The theoretical basis for the quantum time evolution of path integral centroid variables is described, as well as the motivation for using these variables to study condensed phase quantum dynamics. The equilibrium centroid distribution is shown to be a well-defined distribution function in the canonical ensemble. A quantum mechanical quasi-density operator (QDO) can then be associated with each value of the distribution so that, upon the application of rigorous quantum mechanics, it can be used to provide an exact definition of both static and dynamical centroid variables. Various properties of the dynamical centroid variables can thus be defined and explored. Importantly, this perspective shows that the centroid constraint on the imaginary time paths introduces a non-stationarity in the equilibrium ensemble. This, in turn, can be proven to yield information on the correlations of spontaneous dynamical fluctuations. This exact formalism also leads to a derivation of Centroid Molecular Dynamics, as well as the basis for systematic improvements of that theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill Book Company, New York, 1965).Google Scholar
  2. [2]
    R. P. Feynman, Statistical Mechanics (Addison-Wesley Publishing Company, New York, 1972).Google Scholar
  3. [3]
    L. S. Schulman, Techniques and Applications of Path Integration (Wiley-Interscience, New York, 1981).Google Scholar
  4. [4]
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1995).Google Scholar
  5. [5]
    B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1986).CrossRefGoogle Scholar
  6. [6]
    K. E. Schmidt and D. M. Ceperley, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer-Verlag, 1995).Google Scholar
  7. [7]
    R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985).CrossRefGoogle Scholar
  8. [8]
    R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986).Google Scholar
  9. [9]
    S. Jang and G. A. Voth, J. Chem. Phys. 111, 2357 (1999).Google Scholar
  10. [10]
    S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).Google Scholar
  11. [11]
    M. J. Gillan, J. Phys. C 20, 3621 (1987).Google Scholar
  12. [12]
    G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989); G. A. Voth, Chem. Phys. Lett. 270, 289 (1990); G. A. Voth, J. Phys. Chem. 97, 8365 (1993).CrossRefGoogle Scholar
  13. [13]
    A. A. Stuchebrukhov, J. Chem. Phys. 95, 4258 (1991).CrossRefGoogle Scholar
  14. [14]
    J. Cao and G. A. Voth, Chem. Phys. Lett. 261, 111 (1996); J. Chem. Phys. 105, 6856 (1996); 106, 1769 (1997).CrossRefGoogle Scholar
  15. [15]
    J. Cao and G. A. Voth, J. Chem. Phys. 99, 10070 (1993); 100, 5106 (1994); 101, 6157 (1994); 101, 6168 (1994).Google Scholar
  16. [16]
    G. A. Voth, Adv. Chem. Phys. 93, 135 (1996).Google Scholar
  17. [17]
    J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104, 4189 (1996); J. Lobaugh and G. A. Voth, ibid. 104, 2056 (1996); J. Lobaugh and G. A. Voth, ibid. 106, 2400 (1997); M. Pavese and G. A. Voth, Chem. Phys. Lett. 249, 231 (1996); A. Calhoun, M. Pavese, and G. A. Voth, ibid. 262, 415 (1996); M. Pavese, D. R. Berard, and G. A. Voth, ibid. 300, 93 (1999); P.-N. Roy and G. A. Voth, J. Chem. Phys. 110, 3647 (1999); P.-N. Roy, S. Jang, G. A. Voth, ibid. 111 5305 (1999); U. W. Schmitt and G. A. Voth, ibid. 111 9361 (1999); S. Jang, Y. Pak, and G. A. Voth, J. Phys. Chem. A 103 10289 (1999); K. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. 106, 1154 (1997); K. Kinugawa, Chem. Phys. Lett.292, 454 (1998); S. Miura, S. Okazaki, and K. Kinugawa, J. Chem. Phys. 110, 4523 (1999); G. Krilov and B. J. Berne, ibid. 111, 9140 (1999).Google Scholar
  18. [18]
    G. A. Voth, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. E Coker (World Scientific, Singapore, 1998), Chap. 27, p, 647.Google Scholar
  19. [19]
    R. Ramirez and T. Lopez-Ciudad, Phys. Rev. Lett. 83, 4456 (1999).Google Scholar
  20. [20]
    R. Hernandez, J. Cao, and G. A. Voth, J. Chem. Phys. 103, 5018 (1995).CrossRefGoogle Scholar
  21. [21]
    E. Trotter, Proc. Am. Math. Soc. 10, 545 (1958).Google Scholar
  22. [22]
    U. Fano, Rev. Mod. Phys. 29, 74 (1957).CrossRefGoogle Scholar
  23. [23]
    P.-N. Roy and G. A. Voth, J. Chem. Phys. 110, 3647 (1999).Google Scholar
  24. [24]
    See, e.g., A. Messiah, Quantum Mechanics I (North-Holland Publishing Co., 1961), p 216.Google Scholar
  25. [25]
    R. Kubo, J. Phy. Soc. Japan 12, 570 (1957).Google Scholar
  26. [26]
    D. R. Reichman, P.-N. Roy, S. Jang, and G. A. Voth, J. Chem. Phys. XX, xxxx (2000).Google Scholar
  27. [27]
    M. Pavese, S. Jang, and G. A. Voth, Parallel Computing XX, xxxx (2000).Google Scholar
  28. [28]
    J. Cao and G. A. Voth, J. Chem. Phys. 101, 6168 (1994).Google Scholar
  29. [29]
    D. Thirumalai, E. J. Buskin, and B. J. Berne, J. Chem. Phys. 79, 5063 (1983).Google Scholar
  30. [30]
    R. G. Schmidt, M. C. Böhm, and J. Brickmann, Chem. Phys. 215, 207 (1997).CrossRefGoogle Scholar
  31. [31]
    G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).CrossRefGoogle Scholar
  32. [32]
    G. Krilov and B. J. Berne, J. Chem. Phys. 111, 9140 (1999).Google Scholar
  33. [33]
    G. Krilov and B. J. Berne, J. Chem. Phys. 111, 9147 (1999).Google Scholar
  34. [34]
    J. Lobaugh and G. A. Voth, J. Chem. Phys. 106, 2400 (1997).CrossRefGoogle Scholar
  35. [35]
    U. W. Schmitt and G. A. Voth, J. Chem. Phys. 111, 9361 (1999).CrossRefGoogle Scholar
  36. [36]
    U. W. Schmitt and G. A. Voth, J. Phys. Chem. B 102, 5547 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gregory A. Voth
    • 1
  1. 1.Department of Chemistry and Henry Eyring Center for Theoretical ChemistryUniversity of UtahSalt Lake City

Personalised recommendations