Methods for Finding Saddle Points and Minimum Energy Paths

  • Graeme Henkelman
  • Gísli Jóhannesson
  • Hannes Jónsson
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 5)

Abstract

The problem of finding minimum energy paths and, in particular, saddle points on high dimensional potential energy surfaces is discussed. Several different methods are reviewed and their efficiency compared on a test problem involving conformational transitions in an island of adatoms on a crystal surface. The focus is entirely on methods that only require the potential energy and its first derivative with respect to the atom coordinates. Such methods can be applied, for example, in plane wave based Density Functional Theory calculations, and the computational effort typically scales well with system size. When the final state of the transition is known, both the initial and final coordinates of the atoms can be used as boundary conditions in the search. Methods of this type include the Nudged Elastic Band, Ridge, Conjugate Peak Refinement, Drag method and the method of Dewar, Healy and Stewart. When only the initial state is known, the problem is more challenging and the search for the saddle point represents also a search for the optimal transition mechanism. We discuss a recently proposed method that can be used in such cases, the Dimer method.

Keywords

Saddle Point Spring Force Transition State Theory Minimum Energy Path Force Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Eyring, J. Chem. Phys. 3, 107 (1935).Google Scholar
  2. [2]
    E. Wigner, Trans. Faraday Soc. 34, 29 (1938).Google Scholar
  3. [3]
    J. C. Keck, Adv. Chem. 13, 85 (1967).Google Scholar
  4. [4]
    P. Pechukas, in ‘Dynamics of Molecular Collisions’, part B, ed. W. H. Miller (Plenum Press, N.Y. 1976).Google Scholar
  5. [5]
    D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).CrossRefGoogle Scholar
  6. [6]
    A. F. Voter and D. Doll, J. Chem. Phys. 80, 5832 (1984).Google Scholar
  7. [7]
    D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).CrossRefGoogle Scholar
  8. [8]
    J. B. Anderson, J. Chem. Phys. 58, 4684 (1973).Google Scholar
  9. [9]
    A. F. Voter and D. Doll, J. Chem. Phys. 82, 80 (1985).Google Scholar
  10. [10]
    C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).CrossRefGoogle Scholar
  11. [11]
    G. H. Vineyard, J. Phys. Chem. Solids 3 121 (1957).CrossRefGoogle Scholar
  12. [12]
    R. Marcus, J. Chem. Phys. 45, 4493 (1966).Google Scholar
  13. [13]
    G. Mills, G. K. Schenter, D. Makarov and H. Jónsson Chem. Phys. Lett. 278, 91 (1997).CrossRefGoogle Scholar
  14. [14]
    G. Mills, G. K. Schenter, D. Makarov and H. Jónsson, ‘RAW Quantum Transition State Theory’, in ‘Classical and Quantum Dynamics in Condensed Phase Simulations’, ed. B. J. Berne, G. Ciccotti and D. F. Coker, page 405 (World Scientific, 1998).Google Scholar
  15. [15]
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw Hill, New York, 1965).Google Scholar
  16. [16]
    W. H. Miller, J. Chem. Phys. 62, 1899 (1975).Google Scholar
  17. [17]
    S. Coleman, in The Whys of Subnuclear Physics, ed. A. Zichichi (Plenum, N.Y., 1979).Google Scholar
  18. [18]
    V. A. Benderskii, D. E. Makarov and C. A. Wight, Chemical Dynamics at Low Temperature (Whiley, New York, 1994).Google Scholar
  19. [19]
    M. L. McKee and M. Page, Reviews in Computational Chemistry Vol. IV, K. B. Lipkowitz and D. B. Boyd, Eds., (VCH Publishers Inc., New York, 1993).Google Scholar
  20. [20]
    H. Jónsson, G. Mills and K. W. Jacobsen, ‘Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions’, in ‘Classical and Quantum Dynamics in Condensed Phase Simulations’, ed. B. J. Berne. G. Ciccotti and D. F. Coker, page 385 (World Scientific, 1998).Google Scholar
  21. [21]
    H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).CrossRefGoogle Scholar
  22. [22]
    T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).CrossRefGoogle Scholar
  23. [23]
    M. J. Rothman and L. L. Lohr, Chem. Phys. Lett. 70, 405 (1980).CrossRefGoogle Scholar
  24. [24]
    G. Mills and H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994).CrossRefGoogle Scholar
  25. [25]
    G. Mills, H. Jónsson and G. K. Schenter, Surf. Sci. 324, 305 (1995).CrossRefGoogle Scholar
  26. [26]
    G. Henkelman and H. Jónsson, (submitted to J. Chem. Phys.).Google Scholar
  27. [27]
    N. Mousseau and G. T. Barkema, Phys. Rev. E 57, 2419 (1998).CrossRefGoogle Scholar
  28. [28]
    M. Villarba and H. Jónsson, Surf. Sci. 317, 15 (1994).CrossRefGoogle Scholar
  29. [29]
    M. Villarba and H. Jónsson, Surf. Sci. 324, 35 (1995).CrossRefGoogle Scholar
  30. [30]
    E. Batista and H. Jónsson, Computational Materials Science (in press).Google Scholar
  31. [31]
    M. R. Sørensen, K. W. Jacobsen and H. Jónsson, Phys. Rev. Lett. 77, 5067 (1996).Google Scholar
  32. [32]
    T. Rasmussen, K. W. Jacobsen, T. Leffers, O. B. Pedersen, S. G. Srinivasan, and H. Jónsson, Phys. Rev. Lett. 79, 3676 (1997).Google Scholar
  33. [33]
    B. Uberuaga, M. Levskovar, A. P. Smith, H. Jónsson, and M. Olmstead, ‘Diffusion of Ge below the Si(100) surface: Theory and Experiment’, Phys. Rev. Lett. 84, 2441 (2000).CrossRefGoogle Scholar
  34. [34]
    L. R. Pratt, J. Chem. Phys. 85, 5045 (1986).Google Scholar
  35. [35]
    A. Kuki and P. G. Wolynes, Science 236, 1647 (1986).Google Scholar
  36. [36]
    R. Elber and M. Karplus, Chem. Phys. Lett. 139, 375 (1987).CrossRefGoogle Scholar
  37. [37]
    R. Czerminski and R. Elber, Int. J. Quantum Chem. 24, 167 (1990); R. Czerminski and R. Elber, J. Chem. Phys. 92, 5580 (1990).Google Scholar
  38. [38]
    A. Ulitsky and R. Elber, J. Chem. Phys. 92, 1510 (1990).CrossRefGoogle Scholar
  39. [39]
    C. Choi and R. Elber, J. Chem. Phys. 94, 751 (1991).Google Scholar
  40. [40]
    E. M. Sevick, A. T. Bell and D. N. Theodorou, J. Chem. Phys. 98, 3196 (1993).CrossRefGoogle Scholar
  41. [41]
    T. L. Beck, J. D. Doll and D. L. Freeman, J. Chem. Phys. 90, 3183 (1989).Google Scholar
  42. [42]
    R. E. Gillilan and K. R. Wilson, J. Chem. Phys. 97, 1757 (1992).CrossRefGoogle Scholar
  43. [43]
    O. S. Smart, Chem. Phys. Lett. 222, 503 (1994).CrossRefGoogle Scholar
  44. [44]
    G. Henkelman, B. Uberuaga and H. Jónsson, (submitted to J. Chem. Phys.).Google Scholar
  45. [45]
    S. Fischer and M. Karplus, Chem. Phys. Lett. 194, 252 (1992).CrossRefGoogle Scholar
  46. [46]
    Stefan Fischer, “Curvilinear reaction-coordinates of conformal change in macromolecules: application to rotamase catalysis,” Ph. D. Thesis, Harvard University, (1992).Google Scholar
  47. [47]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipies (Cambridge University Press, New York, 1986).Google Scholar
  48. [48]
    I. V. Ionova and E. A. Carter, J. Chem. Phys. 98, 6377 (1993).CrossRefGoogle Scholar
  49. [49]
    M. J. S. Dewar, E. F. Healy, and J. J. P. Stewart, J. Chem. Soc., Faraday Trans. 280, 227 (1984).Google Scholar
  50. [50]
    C. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).CrossRefGoogle Scholar
  51. [51]
    D. T. Nguyen and D. A. Case, J. Phys. Chem. 89, 4020 (1985).CrossRefGoogle Scholar
  52. [52]
    W. Quapp, Chem. Phys. Lett. 253, 286 (1996).CrossRefGoogle Scholar
  53. [53]
    H. Taylor and J. Simons J. Phys. Chem. 89, 684 (1985).CrossRefGoogle Scholar
  54. [54]
    J. Baker, J. Comput. Chem. 7, 385 (1986).Google Scholar
  55. [55]
    D. J. Wales, J. Chem. Phys. 91, 7002 (1989).Google Scholar
  56. [56]
    N. P. Kopsias and D. N. Theodorou, J. Chem. Phys. 109, 8573 (1998).CrossRefGoogle Scholar
  57. [57]
    J, D, Honeycutt and H. C. Andersen, Chem. Phys. Lett. 108, 535 (1984); J. Chem. Phys. 90, 1585 (1986).CrossRefGoogle Scholar
  58. [58]
    G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).CrossRefGoogle Scholar
  59. [59]
    A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).CrossRefGoogle Scholar
  60. [60]
    G. Mills, T. R. Mattsson, I. Mollnitz, and H. Metiu, J. Chem. Phys. 111, 8639 (1999).CrossRefGoogle Scholar
  61. [61]
    D. W. Bassett and P. R. Webber, Surf. Sci. 70, 520 (1978).CrossRefGoogle Scholar
  62. [62]
    G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).CrossRefGoogle Scholar
  63. [63]
    Polanyi and Wong, J. Chem. Phys. 51, 1439 (1969).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Graeme Henkelman
    • 1
  • Gísli Jóhannesson
    • 1
  • Hannes Jónsson
    • 1
  1. 1.Department of Chemistry 351700University of WashingtonSeattle

Personalised recommendations