Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 45–431, Wiley-Interscience, New York (1971).Google Scholar
  2. 2.
    R. Guglielmetti, 4n + 2 Systems: Spiropyrans, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), Chap. 8, pp. 314–466, Elsevier, Amsterdam (1990).Google Scholar
  3. 3.
    H. Nakazumi, K. Maeda, S. Yagi, and T. Kitao, Novel merocyanine dyes are converted into the spiropyran form by irradiation with visible light, J. Chem. Soc., Chem. Commun., 1992, 1188–1189.Google Scholar
  4. 4.
    J. Zhou, Y. Li, Y. Tang, F. Zhao, X. Song, and E. Li, Detailed investigation on a negative photochromic spiropyran, J. Photochem. Photobiol. A: Chem., 90, 117–123 (1995).CrossRefGoogle Scholar
  5. 5.
    T. Zimmermann and M. Pink, Ring transformations of heterocyclic compounds. XII. Novel spiroindolines via ring transformation of 2,4,6-triarylpyrylium salts with 2-methyleneindolines, J. Prakt. Chem. Chem. Zeit., 337, 368–374 (1995).Google Scholar
  6. 6.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 242–243, Wiley-Interscience, New York (1971).Google Scholar
  7. 7.
    R. C. Bertelson, unpublished.Google Scholar
  8. 8.
    D. A. Drapkina, V. G. Brudz’, Yu. S. Ryabokobylko, A. V. Chekunov, and V. A. Inshakova, Anomalous nitration of 5-bromosalicylaldehyde. I. Migration of bromine and elimination of bromine and the formyl groups, J. Org. Chem. USSR, 3, 1566–1569 (1967).Google Scholar
  9. 9.
    D. A. Drapkina, An error in the structures assigned to 6′-bromo-8′-nitro-3,3′-dimethylspiro[benzothiazoline-2,2′-(2 H-1-benzopyran] and 5-bromo-3-nitrosalicylaldehyde, J. Org. Chem. USSR, 7, 2083 (1971).Google Scholar
  10. 10.
    M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. VII. Synthesis and catalytic activity of (2-formyl-3-hydroxyphenyl)dimethylsulfonium salt in the racemization of L-glutamic acid, Bull. Chem. Soc. Jpn., 51, 2437–2438 (1978).Google Scholar
  11. 11.
    M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. VI. Syntheses of some dimethylsulfonio derivatives of salicylaldehyde, Bull. Chem. Soc. Jpn., 51, 2435–2436 (1978).Google Scholar
  12. 12.
    M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. V. Syntheses and catalytic activities of some trimethylammonio derivatives of salicylaldehyde in the racemization of L-glutamic acid, Bull. Chem. Soc. Jpn., 51, 2433–2434 (1978).Google Scholar
  13. 13.
    N. A. Voloshin, N. V. Volbushko, N. S. Trofimova, N. E. Shelepin, and V. I. Minkin, Novel spiropyrans with a luminescent label in the 2 H-chromene fragment, Mol. Cryst. Liq. Cryst., 246, 41–44 (1994).Google Scholar
  14. 14.
    Yu. M. Chunaev and N. M. Przhiyalgovskaya, 2-Methyleneindoline Bases. Synthesis and Properties, Summaries in Science and Technology. Organic Chemistry Series, Vol. 14, VINITI Moscow (1990).Google Scholar
  15. 15.
    N. Gamon and C. Reichardt, An improved method for the synthesis of 1,3,3-triethyl-2-methyleneindoline, Chem. Ber., 113, 391–394 (1980).Google Scholar
  16. 16.
    C. Reichardt and H.-D. Engel, An improved method for the synthesis of 1,3,3-trialkyl-2-alkylideneindolines, Chem. Ber., 121, 1009–1011 (1988).Google Scholar
  17. 17.
    A. Fabrycy and A. Pawlak, 1,2,2-Trimethyl-3-methyleneindoline, Zeit. Chem., 15, 190–191 (1975).Google Scholar
  18. 18.
    B. R. Anderson, Method for preparing indoleninium halide, U.S. Pat. 5,039,823, 5 pp., Aug. 13, 1991.Google Scholar
  19. 19.
    X. Liao and J. Hu, Study on the N-methylation process of 2,3,3-trimethylindolenine—application of a phase-transfer catalyst, Huaxue Shijie, 33, 451–453 (1992).Google Scholar
  20. 20.
    C. Moustrou, M. Campredon, A. Samat, F. Garnier, J. Robillard, and R. Guglielmetti, New spiropyran and spirooxazine compounds with one or two thiophene nuclei. Applications to anticopying protection materials, Mol Cryst. Liq. Cryst., 246, 29–32 (1994).Google Scholar
  21. 21.
    D. M. Fabricius, T. Schelhorn, and G. C. Weed, Near infra-red dyes and photographic element containing such dyes, Eur. Pat. Appl. EP 626,427, 23 pp., Nov. 20, 1994.Google Scholar
  22. 22.
    R. Bartnik, S. Lesniak, G. Mloston, T. Zielinski, and K. Gebicki, Cationic 1-(2-hydroxyethyl)-2-styryl-3,3-dimethyl-3 H-indole dyes, Chem. Stosow., 34, 325–334 (1990).Google Scholar
  23. 23.
    I. B. Lazarenko, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, G. K. Bobyleva, and N. N. Suvorov, Synthesis and photochromic properties of indolinospirochromenes with benzyl, ethyl, and acetonyl groups attached to the nitrogen atom, Chem. Heterocycl. Cpds., 1982, 1054–1057.Google Scholar
  24. 24.
    B. J. Wright, A. C. Baillie, and J. R. Dowsett, The synthesis and insecticidal activity of indolederived carbamates, Pestic. Sci., 8, 323–330 (1977).Google Scholar
  25. 25.
    A. A. Shachkus, Yu. A. Degutis, and A. G. Urbonavichyus, Synthesis and study of 5a,6-dihydro-1 2H-indolo[2,1 b][ 1,3]-benzoxazines, Chem. Heterocycl. Cpds., 1989, 562–565.Google Scholar
  26. 26.
    A. A. Schachkus and Yu. A. Degutis, Reaction of 2,3,3-trimethyl-3 H-indolium salts with crotonaldehyde, Chem. Heterocycl. Cpds., 1990, 881–883.Google Scholar
  27. 27.
    R. Bartnik and B. Kryczka, Synthesis of cationic dyes by the condensation of 1-chloroethyl-and 1-hydroxyethyl-2-formyl-methylene-3,3-dimethylindolines with indoles in acetic acid., Chem. Stosow., 34, 335–342 (1990).Google Scholar
  28. 28.
    S. V. Pazenok, N. V. Kondratenko, and L. M. Yagupol’skii, Imidacyanine dyes with a superstrong electron-acceptor substituent CF3S(O) = NSO2 CF3, Ukrain. Chem. J., 56, 80–82 (1990).Google Scholar
  29. 29.
    A. Brack, Heterocyclic dye intermediates, Fr. Pat. 1,395,927, 4 pp., Apr. 16, 1965.Google Scholar
  30. 30.
    N. S. Dokunikhin and Ya. B. Steinberg, Preparation of benz[c, d]indolines. V. Monomethinecyanines prepared from benz[c, d]-indolines, J. Gen. Chem. USSR, 30, 1989–1992 (1960).Google Scholar
  31. 31.
    N. P. Vasilenko, F. A. Mikhalenko, and Yu. L. Rozhinskii, 2-Methylbenz[c, d]indole and its derivatives, Dyes Pigm., 2, 231–237 (1981).CrossRefGoogle Scholar
  32. 32.
    O. Ya. Fedetova, N. N. Kozyreva, G. A. Popova, and G. S. Kolosnikov, Synthesis of 1-azaacenaphthylenes, Chem. Heterocycl. Cpds., 1973, 41.Google Scholar
  33. 33.
    W. C. Sumpter and W. W. Hunt, The reaction of phenylmagnesium bromide with N-methylisatin, Trans. Kentucky Acad. Sci., 17, 78–80 (1956).Google Scholar
  34. 34.
    F. J. Myers and H. G. Lindwall, Reactions of Grignard reagents with isatin and N-alkyl isatins, J. Am. Chem. Soc., 60, 2153–2155 (1938).Google Scholar
  35. 35.
    C. W. Bird, The addition of diphenylketen to benzoquinone N-phenylimine, J. Chem. Soc., 1965 3016.Google Scholar
  36. 36.
    G. Ciamician and A. Piccinini, On dihydrotrimethylquinoline, Ber., 29, 2465–2471 (1896).Google Scholar
  37. 36a.
    R. C. Bertelson and R. A. Sallavanti, Squarylium dyestuffs and compositions containing same, U.S. Pat. 5,543,086, 11 pp., Aug. 6, 1996.Google Scholar
  38. 37.
    A. A. Tolmachev and V. S. Tolmacheva, 5-Substituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1986, 1189–1192.Google Scholar
  39. 38.
    A. A. Tolmachev, A. Yu. Mitrokhin, V. S. Tolmacheva, and A. V. Kharchenko, Substituted 2-methyl-and 2-methyleneindolines. 6. Adducts of dialkylphosphites with 1,3,3-trimethyl-2-methyleneindoline. Reagents for synthesizing 5-substituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1993, 892–897.Google Scholar
  40. 39.
    A. A. Tolmachev, L. N. Babichenko, V. S. Tolmacheva, T. S. Chmilenko, and A. K. Sheinkman, 5-Hetaryl-substituted 2-methyleneindolines and polymethine dyes based on them, Chem. Heterocycl. Cpds., 1990, 877–880.Google Scholar
  41. 40.
    A. A. Tolmachev, L. N. Babichenko, T. S. Chmilenko, and A. K. Sheinkman, 5-Benzopyridylsubstituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1989, 1143–1148.Google Scholar
  42. 41.
    A. A. Tolmachev, L. N. Babichenko, and A. K. Sheinkman, 5-Vinyl-β-hetaryl-substituted 2-methyl-and 2-methylenindolines and polymethine dyes on their basis, Ukrain. Chem. J., 57, 75–78 (1991).Google Scholar
  43. 42.
    A. A. Tolmachev, V. S. Tolmacheva, L. I. Shevchuk, and F. S. Babichev, Substituted 2-methyl-and 3-methyleneindolines. 4. Hetaryl-condensed 2-methyl and 2-methyleneindolines with a linear structure, Chem. Heterocycl. Cpds., 1992, 1130–1134.Google Scholar
  44. 43.
    D. J. Gale and J. F. K. Wilshire, Fibre-reactive basic dyes. I. Polymethine dyes containing the N-chloroacetyl group, J. Soc. Dyers Colour., 1974, 97–100.Google Scholar
  45. 44.
    V. S. Tolmacheva, A. A. Tolmachev, L. I. Shevchuk, and F. S. Babichev, Direct sulfonation of 1,3,3-trimethyl-2-methyleneindoline, Chem. Heterocycl. Cpds., 1989, 1315.Google Scholar
  46. 45.
    D. J. Gale, J. Lin, and J. F. K. Wilshire, The amidomethylation and bromination of Fischer’s base. The preparation of some new polymethine dyes, Austr. J. Chem., 30, 689 (1977).Google Scholar
  47. 46.
    A. A. Tolmachev, V. S. Tolmacheva, L. I. Shevchuk, A. V. Turov, É. S. Kozlov, and F. S. Babichev, Substituted 2-methyl-and 2-methyleneindolines. 3. Nitroamino-5,6-disubstituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1990, 1245–1249.Google Scholar
  48. 47.
    R. Bartnik, G. Mloston, and Z. Skrzypek, Synthesis of new trimethinecyanine dyes by condensation of 2-formylmethylene-3,3-dimethylindoline with 2-cyanomethylbenzimidazoles, Pol. J. Appl. Chem., 37, 119–125 (1993).Google Scholar
  49. 48.
    A. A. Shachkus, Yu. A. Degutis, and P. P. Mikul’skis, Synthesis of derivatives of 1,3-dihydrospiro[2H-indole-2,2′-pyrrolidine], Chem. Heterocycl. Cpds., 1989, 47–50.Google Scholar
  50. 49.
    A. A. Shachkus and Yu. A. Degutis, Alkylation of 1,2,3,9 a-imidazo[1,2-a]indol-2-ones, Chem. Heterocycl. Cpds., 1988, 41–44.Google Scholar
  51. 50.
    R. Yu. Dyagutite and A. A. Shachkus, Alkylation of 1,2,3,4,10,10a-hexahydropyrimido[1,2-a]indol-2-one, Chem. Heterocycl. Cpds., 1989, 1024–1027.Google Scholar
  52. 51.
    A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Plancher rearrangement in the reaction of 1,3,3-trimethyl-2-cyanomethyleneindoline with ortho-phenylenediamine, Chem. Heterocycl. Cpds., 1992, 430–434.Google Scholar
  53. 52.
    L. Capuano and H. J. Schrepfer, Synthesis of pyrimido-[3,4-a]indoles, Chem. Ber., 105, 2539–2545 (1972).Google Scholar
  54. 53.
    I. B. Lazarenko, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, O. R. Khrolova, and N. N. Suvorov, Condensation of 2,3,3-trimethylindolenine with salicylaldehydes, Chem. Heterocycl. Cpds., 1978, 985–987.Google Scholar
  55. 54.
    G. I. Dmitrienko, The bromination of 2,3-dimethylindole, Heterocycles, 12, 1141–1145 (1979).Google Scholar
  56. 55.
    C. W. G. Fishwick, A. D. Jones, and M. B. Mitchell, Regio-and chemoselective alkylation of 2,3-dialkylindoles. A convenient preparation of 2,3,3-trialkyl-3H-indoles, Heterocycles, 32, 685–692 (1991).Google Scholar
  57. 56.
    H. Laas, A. Nissen, and A. Nürrenbach, A simple synthesis of 3 H-indoles starting from acetylenic alcohols, Synthesis, 1981, 958–959.Google Scholar
  58. 57.
    K. Diehl, M. Fischer, and M. Dimmler, Process for the production of indolenines, Eur. Pat. Appl. 509,301, 8 pp., Feb. 28, 1992.Google Scholar
  59. 58.
    B. Robinson, The Fischer Indole Synthesis, J. Wiley, New York (1982).Google Scholar
  60. 59.
    L. J. Kricka and J. M. Vernon, Some derivatives of 2,5-xylidine and their cyclization to indoles, Can. J. Chem., 52, 299–302 (1974).Google Scholar
  61. 60.
    R. N. Akhvlediani, M. M. Khazhidze, V. N. Eraksina, and N. N. Suvorov, Indole derivatives. 133. Synthesis of 5-(2-pyridyl)indole, Chem. Heterocycl. Cpds., 1988, 1221–1225.Google Scholar
  62. 61.
    H. J. Roth and P. Lepke, Synthesis of indole and carbazole derivatives by condensation of α-hydroxyketones and aromatic amines, Arch. Pharm., 305, 159–171 (1972).Google Scholar
  63. 62.
    H.-J. Opgenorth and H. Scheuermann, On the mechanism of the cyclization of 2-methyl-3-phenylimino-2-butanols to 3H-indoles, Liebigs Ann., 1979, 1503–1508.Google Scholar
  64. 63.
    I. B. Abdrakhmanov, A. G. Mustafin, G. A. Tolstikov, and U. M. Dzhemilev, Intramolecular catalytic cyclization of substituted 2-alkenylanilines, Chem. Heterocycl. Cpds., 1987, 420–422.Google Scholar
  65. 64.
    M. A. Yurovskaya, A. V. Karchava, A. Z. Afanas’ev, and Yu. G. Bundel’, Indoles from 3-nitropyridinium salts. 9. Methyl ethyl ketone N-methylimine in the indolization of 1-methyl-3-nitropyridinium salts, Chem. Heterocycl. Cpds., 1992, 409–413.Google Scholar
  66. 65.
    S. P. Gromov, M. M. Bkhaumik, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts, Chem. Heterocycl. Cpds., 1987, 406–414.Google Scholar
  67. 66.
    A. Z. Afanas’ev, M. A. Yurouskaya, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts. 3. Origin of the nitrogen in the indole molecule in synthesis from a 3-nitropyridinium salt, Chem. Heterocycl. Cpds., 1987, 112–113.Google Scholar
  68. 67.
    M. A. Yurovskaya, A. Z. Afanas’ev, V. A. Chertkov, E. M. Gizatulina, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts. 4. Ketimines in the synthesis of indoles from 3-nitropyridinium salts, Chem. Heterocycl. Cpds., 1987, 1305–1308.Google Scholar
  69. 68.
    A. P. Kozikowski, X.-M. Cheng, C.-S. Li, and J. G. Scripko, A new indole synthesis promoted by metal triflates, Israel J. Chem., 27, 61–65 (1986).Google Scholar
  70. 69.
    R. S. Hosmane, S. P. Hiremath, and S. W. Schneller, Synthesis of indoles and carbazoles: Diels-Alder reactions of nitrovinylpyrroles and-benzindoles, J. Chem. Soc., Perkin Trans. I, 1973, 2450–2453.Google Scholar
  71. 70.
    K. Namba and S. Suzuki, Normal and reverse photochromism of 1-(b-carboxyethyl)-3,3-dimethyl-6′-nitrospiro[indoline-2,2′-2H-benzopyran] in water-dioxane, Bull. Chem. Soc. Jpn., 48, 1323–1324 (1975).Google Scholar
  72. 71.
    J. E. G. Taylor, D. B. McQuain, R. E. Fox, R. E. Bowman, and F. D. Thomson, Benzo-β-naphthoisospiropyrans and compositions comprising same, U.S. Pat. 3,413,234, 6 pp., Nov. 26, 1968.Google Scholar
  73. 72.
    E. Berman, and D. B. McQuain, Derivatives of 3′-methyl-spiro(2H-1-β-naphthopyran-2,2′-[2′H-1′-benzopyran]), U.S. Pat. 2,987,462, 2 pp., Apr. 4, 1961.Google Scholar
  74. 73.
    E. Berman and D. B. McQuain, Derivatives of 3-phenyl-spiro(2 H,1-benzopyran-2,2′-[2′ H,1′-benzopyran]), U.S. Pat. 3,002,318, 2 pp., Feb. 20, 1962.Google Scholar
  75. 74.
    R. J. Guglielmetti, F. Gamier, Y. M. Poirier, and G. M. C. Petillon, Spiropyran compounds of piperidine or thiazine rings, U.S. Pat. 4,287,337, 9 pp., Sept. 1, 1981.Google Scholar
  76. 75.
    R. Guglielmetti, 4n + 2 Systems: Spiropyrans, in: Photochromism: Molecules and Systems (H. Durr and H. Bouas-Laurent, eds.), Chap. 8, pp. 438–443, Elsevier, Amsterdam (1990).Google Scholar
  77. 76.
    N. F. Haley, 3-Methyl-2,1-benzisoxazolium, benzisothiazolium, and indazolium salts as new activemethyl compounds, J. Org. Chem., 43, 1233–1237 (1978).Google Scholar
  78. 77.
    H. Booth, A. W. Johnson, E. Markham, and R. Price, The alkylation of tri-and tetra-alkylpyrroles, J. Chem. Soc., 1959, 1587–1594.Google Scholar
  79. 78.
    Z. Liu, Y. Gong, W. Li, and L. Jiang, The relationship between spectral properties and structures of substituted 10H-pyrido[1,2-a]indolium salts, Chinese Sci. Bull., 37, 1704–1708 (1992).Google Scholar
  80. 79.
    M. Inouye, K. Kim, and T. Kitao, Selective coloration of spiro pyridopyrans for guanosine derivatives, J. Am. Chem. Soc., 114, 778–780 (1992).CrossRefGoogle Scholar
  81. 80.
    B. S. Luk’yanov, L. E. Nivorozhkin, and V. I. Minkin, Photo-and thermochromic spirans 18. [Note: an earlier paper (ref. 183) is also numbered 18 in this series] Indolinospirochromenes with π-acceptor substituents in the 8′ position, Chem. Heterocycl. Cpds., 1993, 152–154.Google Scholar
  82. 81.
    N. M. Przhiyalgovskaya, I. V. Manakova, L. N. Kurkovskaya, and N. N. Survorov, Synthesis of 4-nitro-3,3,7-trimethyl-2-(2-hydroxystyryl)indolenines, Chem. Heterocycl. Cpds., 1990, 290–292.Google Scholar
  83. 82.
    S.-R. Keum, J.-H. Lee, M.-K. Seok, and C.-M. Yoon, A simple and convenient synthetic route to the bis-indolinospirobenzopyrans, Bull. Korean Chem. Soc., 15, 275–277 (1994).Google Scholar
  84. 83.
    S.-R. Keum, J.-H. Lee, and M.-K. Seok, Synthesis and characterization of bis-indolinospirobenzopyrans, new photo-and thermochromic dyes, Dyes Pigm., 25, 21–29 (1994).CrossRefGoogle Scholar
  85. 84.
    E. R. Zakhs, L. A Zvenigorodskaya, N. G. Leshenyuk, and V. P. Martynova, Bromination of spiropyrans and reduction of their nitro derivatives, Chem. Heterocycl. Cpds., 1977, 1055–1061.Google Scholar
  86. 85.
    N. P. Samoilova and M. A. Gal’bershtam, Some substitution reactions in a number of photochromic indolinespirochromenes, Chem. Heterocycl. Cpds., 1977, 855–858.Google Scholar
  87. 86.
    Y. Ohnishi, T. Karuse, and K. Kotani, Synthesis of spiropyrans on the surface of silica gel with chemical bonds, Repts. Aichi ken Kogyo Gijutsu Center, 25, 21–27 (1989).Google Scholar
  88. 87.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), pp. 291–293, Wiley-Interscience, New York (1971).Google Scholar
  89. 88.
    A. A. Tolmachev, L. N. Babichenko, and A. K. Sheinkman, Synthesis of 3,4-dihydroisoxazoles—derivatives of ω-carbonyl-substituted 1,3,3-trimethyl-2-methyleneindolines and their chemical reactions, Chem. Heterocycl. Cpds., 1993, 446–451.Google Scholar
  90. 89.
    A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Ring-chain isomerism of 1,3,3-trimethyl-2-formylmethyleneindoline (Fischer aldehyde) oxime and associated reactions, Chem. Heterocycl. Cpds., 1992, 148–153.Google Scholar
  91. 90.
    B. Hellrung and H. Balli, Investigations on the thermochromism of heterospirans and color-formers with heterocyclic parts and O or N as the ring-closing atom, Helv. Chim. Acta, 72, 1583–1589 (1989).CrossRefGoogle Scholar
  92. 91.
    R. A. Coleman, J. Kazan, and M.-L. Vega, Synthesis of chromotropic colorants, U.S. Army Natick Laboratories Technical Report 68-68-CM (June 1968), pp. 8–14.Google Scholar
  93. 92.
    N. A. Martemyanova, Yu. M. Chunaev, N. M. Przhiyalgovskaya, L. N. Kurkovskaya, O. S. Filipenko, and S. M. Aldoshin, Influence of substituents in the salicylaldehyde molecule on interaction with 2-imino-3,5-dimethythiazolidine, Chem. Heterocycl. Cpds., 1993, 356–361.Google Scholar
  94. 93.
    N. Martemyanova, Y. Chunaev, N. M. Przhiyalgovskaya, L. Kurkovskaya, R. Ambartsumova, O. Filipenko, and S. Aldoshin, Interaction of 2-imino-3-methylbenzothiazoline with salicyclic aldehydes, Mol. Cryst. Liq. Cryst., 246, 45–48 (1994).Google Scholar
  95. 94.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 257 and 290, Wiley-Interscience, New York (1971).Google Scholar
  96. 95.
    N. M. Przhiyalgovskaya, L. I. Kon’kov, I. I. Boiko, and L. N. Kurkovskaya, Carbocyanine dyes with an o-hydroxyaryl substituent in the meso position of the polymethine chain, Chem. Heterocycl. Cpds., 1988, 83–86.Google Scholar
  97. 96.
    N. M. Przhiyalgovskaya, L. I. Kon’kov, L. N. Kurkovskaya, and V. F. Mandzhikov, Synthesis of 4-chlorosubstituted spiropyranes of the indole series, Chem. Heterocycl. Cpds., 1987, 1078–1081.Google Scholar
  98. 97.
    V. V. Ivanitskii, O. G. Nikolaeva, A. V. Metelitsa, N. V. Volbushko, B. S. Luk’yanov, V. A. Palchkov, and N. E. Shelepin, Photochromic coumarin spiropyrans, Chem. Heterocycl. Cpds., 1992, 503–506.Google Scholar
  99. 98.
    D. Kühn, H. Balli, and U. E. Steiner, Kinetic study of the photodecoloration mechanism of an inversely photochromic class of compounds forming spiropyran analogues, J. Photochem. Photobiol. A; Chem., 61, 99–112 (1991).CrossRefGoogle Scholar
  100. 99.
    É. R. Zakhs, R. P. Polyakova, and L. S. Éfros, Spiropyrans based on 5,10-dimethyl-4,9-diazapyrene, Chem. Heterocycl. Cpds., 1976, 273–279.Google Scholar
  101. 100.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, L. N. Kurkovskaya, and M. A. Gal’bershtam, Reaction of the Fischer base with 8-hydroxy-1-naphthaldehydes. Investigation of the reaction products by 13C NMR spectroscopy, Chem. Heterocycl. Cpds., 1982, 1164–1169.Google Scholar
  102. 101.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, L. N. Kurkovskaya, and M. V. Karpova, Reaction of the Fischer base with nitro-and bromo-substituted o-hydroxycinnamaldehydes, Chem. Heterocycl. Cpds., 1984, 628–631.Google Scholar
  103. 102.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, and M. A. Gal’bershtam, Reactions of vinylogs of a Fischer base with salicylaldehydes, Chem. Heterocycl. Cpds., 1981, 476–479.Google Scholar
  104. 103.
    M. A. Gal’bershtam, A. P. Sidorov, N. M. Przhiyalgovskaya, Yu. P. Strokach, V. A. Barachevskii, I. V. Manakova, and N. N. Suvorov, Effect of the inclusion of a cyclic fragment in the chromophore on the properties of a spiropyran-merocyanine system, Chem. Heterocycl. Cpds., 1982, 923–928.Google Scholar
  105. 104.
    B.-Ya. Simkin, V. I. Minkin, and L. E. Nivorozhkin, Photochromic and thermochromic spirans. IX. Prediction of the stabilities of spiropyran structures and the electronic absorption spectra of their photocolored and thermocolored isomers, Chem. Heterocycl. Cpds., 1978, 948–959.Google Scholar
  106. 105.
    F. N. Stepanov, and A. G. Yurchenko, Condensation of azulenium salts with aromatic hydroxyaldehydes, J. Org. Chem. USSR, 2, 145–149 (1966).Google Scholar
  107. 106.
    M. A. Gal’bershtam, N. N. Artamonova, and N. P. Samoilova, Synthesis of 3′-acyl-substituted indoline spiropyrans, Chem. Heterocycl. Cpds., 1975, 167–172.Google Scholar
  108. 107.
    S. V. Pazenok, V. A. Soloshonok, and L. M. Yagupol’skii, Reactions of perfluorocarbonyl compounds with 1,3,3-trimethyl-2-methyleneindoline, Chem. Heterocycl. Cpds., 1990, 115.Google Scholar
  109. 108.
    M. A. Gal’bershtam, E. M. Bondarenko, O. R. Khrolova, G. K. Bolyleva, Yu. B. Pod’yachev, N. M. Przhiyalgovskaya, and N. N. Suvorov, Synthesis and photochromic properties of 5-acetyl-substituted indolinospirochromenes, Chem. Heterocycl. Cpds., 1979, 1329–1333.Google Scholar
  110. 109.
    E. V. Braude, and M. A. Gal’bershtam, 3-Nitro-5-chloromethylsalicylaldehyde in the synthesis of photochromic spirochromenes of the indoline series, Chem. Heterocycl. Cpds., 1978, 153–156.Google Scholar
  111. 110.
    M. Le Baccon, F. Garnier, and R. Guglielmetti, Synthesis and spectrokinetic properties of a series of indolino-and benzothiazolinospiropyrans from the aspect of applications in the field of reprography, Bull. Soc. Chim. France, 1979, 315–324.Google Scholar
  112. 111.
    I. V. Manakova, M. A. Gal’bershtam, C. K. Bobyleva, N. M. Przhiyalgovskaya and L. N. Kurkovskaya, Synthesis and photochromism of indolinospirochromenes with condensed fragments in the indoline part of the molecules, Chem. Heterocycl. Cpds., 1988, 87–92.Google Scholar
  113. 112.
    M. A. Gal’bershtam, N. M. Przhiyalgovskaya, O. R. Khrolova, I. B. Lazarenko, G. K. Bobyleva, and N. N. Suvorov, Photochromic properties of some N-substituted 3,3-dimethyl-6′-nitro-indoline-2-Spiro-2′-2 H-chromenes, Chem. Heterocycl. Cpds., 1977, 1309–1313.Google Scholar
  114. 113.
    M. A. Gal’bershtam, V. I. Pantsyrnyi, and N. A. Donskaya, Kinetics of the thermal decoloration reaction of 1,3,3-trimethyl-6′-nitrospiro[(2′iH,1′-benzopyran)-2,2′-indolines] containing various substituents in positions 5 and 8′, Kinet. Catal., 12, 928–929 (1971).Google Scholar
  115. 114.
    S-K. Lee and D. C. Neckers, Benzospiropyrans as photochromic and/or thermochromic photoinitiators, Chem. Mater., 3, 852–858 (1991).Google Scholar
  116. 115.
    S.-K. Lee and D. C. Neckers, Two-photon radical-photoinitiator system based on iodinated benzospirans, Chem. Mater., 3, 858–864 (1991).Google Scholar
  117. 116.
    J-C. LeDuc, F. Garnier, and R. Guglielmetti, Synthesis and properties of azaheterocyclic spiropyrans containing a chromophoric group of the arylazo type on the benzopyran nucleus, Compt. Rend. Acad. Sci., Ser. C, 282, 691–694 (1976).Google Scholar
  118. 117.
    E. Berman, R. E. Fox, and F. D. Thomson, Photochromic spiropyrans. I: The effect of substituent on rate of ring closure, J. Am. Chem. Soc., 81, 5605–5608 (1959).CrossRefGoogle Scholar
  119. 118.
    M. A. Halberstam and M. B. Gordin, Kinetics of reversible photochromic reactions in the series of 1,5-disubstituted 3,3-dimethyl-6′-nitro-8′-bromospiro-[(2′H,1′-benzopyran)-2,2′-indolines], Photochem. Photobiol., 17, 103–113 (1973).Google Scholar
  120. 119.
    M. B. Gordin, and M. A. Gal’bershtam, Kinetics of the darkening [Note: “fading” is meant] of several photochromic spiropyrans, Kinet. Catal, 12, 688–689 (1971).Google Scholar
  121. 120.
    H. Oda, Photostabilisation of photochromic materials: contribution of amphoteric counterions on the photostability of spiropyrans and related compounds, Dyes Pigm., 23, 1–12 (1993).CrossRefGoogle Scholar
  122. 121.
    S.-R. Heum, M.-S. Hur, P. M. Kazmaier, and E. Buncel, Thermo-and photochromic dyes: Indolinobenzospiropyrans. Part 1. UV-VIS spectroscopic studies of 1,3,3-spiro(2H-1-benzopyran-2,2′-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation, Can. J. Chem., 69, 1940–1947 (1991).Google Scholar
  123. 122.
    Y. S. Lee, J. G. Kim, Y. D. Huh, and M. K. Kim, Thermochromism of spiropyran and spirooxazine derivatives, J. Korean Chem. Soc., 38, 864–872 (1994).Google Scholar
  124. 123.
    S.-R. Keum, J.-H. Yun, and K.-W. Lee, Unusual solvatokinetic behavior of 5-chlorinated 1,3,3-spiro(2H-1-benzopyran-2,2′-indoline) derivatives, Bull. Korean Chem. Soc., 13, 351–352 (1992).Google Scholar
  125. 124.
    S.-R. Keum and K.-W. Lee, Unusual solvatochromic behavior of the open-chain merocyanine forms of 5-chlorinated 1,3,3-spiro(2H-1-benzo-2,2′-indoline) derivatives, Bull. Korean Chem. Soc., 14, 16–18 (1993).Google Scholar
  126. 125.
    S.-R. Keum, K.-B. Lee, P. M. Kazmaier, and E, Buncel, A novel method for measurement of the merocyanine-spiropyran interconversion in nonactivated 1,3,3-trimethylspiro(2H-1-benzopyran-2,2′-indoline) derivatives, Tetrahedron Lett., 35, 1015–1018 (1994).CrossRefGoogle Scholar
  127. 126.
    I. Ya. Kasparova, A. A. Pankratov, A. V. Zubkov, and Yu. E. Gerasimenko, Formation of complexes of the merocyanine form of spirochromenes with proton donors, Kinet. Catal., 19, 1283–1285 (1978).Google Scholar
  128. 127.
    S. Nakano, A. Miyashita, and H. Nohira, Metastable solution structures of spirobenzoselenazolinobenzopyrans and their negative photochromic properties, Chem. Lett., 1993, 13–16.Google Scholar
  129. 128.
    D.-X. Wu, P.-F. Xia, and H.-M. Zhao, Synthesis of photochromic crown ether merocyanine dyes and study of their reverse photochromism, Youji Huaxue, 12, 76–80 (1992).Google Scholar
  130. 129.
    V. I. Minkin, L. E. Nivorozhkin, N. S. Trofimova, Yu. V. Revinskii, M. I. Knyazhanskii, N. V. Volbushko, O. A. Osipov, A. V. Lukash, and B. Ya. Simkin, Photochromic and thermochromic spirans. 6. Synthesis, spectra, and photochromism of derivatives of spiro[(2H)-1-benzopyran-2,2′-benzo-1′,3′-dithiole], J. Org. Chem. USSR, 11, 818–825 (1975).Google Scholar
  131. 130.
    V. A. Lokshin, N. S. Trofimova, N. A. Voloshin, Yu. V. Reveinskii, N. E. Shelepin, Kh. A. Kurdanov, and V. I. Minkin, Photochromic and thermochromic spiropyrans. 10. Photochromic spiropyrans of the dithiolane series, Chem. Heterocycl. Cpds., 1980, 38–41.Google Scholar
  132. 131.
    S.-R. Keum, K.-B. Lee, P. M. Kazmaier, R. A. Manderville, and E. Buncel, Thermo-and photochromic dyes: spiro(indolinebenzopyrans). 2. Detailed assignment of the 1H NMR spectra and structural aspects of the closed form of 1,3,3-trimethylspiro(indoline-2,2′-benzopyrans), Mag. Resonance Chem., 30, 1128–1131 (1992).Google Scholar
  133. 132.
    A. Alberti, M. Campredon, G. Gronchi, and A. Samat, EPR and electrochemical studies of radicals from photochromic compounds, Mol. Cryst. Liq. Cryst., 246, 327–330 (1994).Google Scholar
  134. 133.
    R. S. Becker, and J. Kolc, Photochromism: Spectroscopy and photochemistry of pyran and thiopyran derivatives, J. Phys. Chem., 72, 997 (1968).Google Scholar
  135. 134.
    J. Seto, Photochromic dyes, in: Infrared Absorbing Dyes (M. Matsuoka, ed.), pp. 71–88, Plenum Press, New York (1990).Google Scholar
  136. 135.
    M. S. Korobov, V. I. Minkin, and L. E. Nivorozhkin, Benzenoid-quinoid tautomerism of azomethines and their structural analogs. 20. Imines derived from 5-nitrothiosalicylaldehyde, J. Org. Chem. USSR, 11, 826–831 (1975).Google Scholar
  137. 136.
    S. Arakawa, H. Kondo, and J. Seto, Photochromic compounds and photosensitive compositions containing such compounds, Eur. Pat. Appl. EP 115,201, 21 pp., Aug. 8, 1984.Google Scholar
  138. 137.
    S. Arakawa, H. Kondo, and J. Seto, Photochromism. Synthesis and properties of indolinospirobenzothiopyrans, Chem. Lett., 1985, 1805–1808.Google Scholar
  139. 138.
    B. S. Lukyanov, M. I. Knyazhanskii, Yu. V. Revinskii, L. E. Nivorozhkin, and V. I. Minkin, Photo-and thermochromic spirans, III. The photochromism of selenochromenes, Tetrahedron Lett., 1973, 2007–2010.Google Scholar
  140. 139.
    A. V. El’tsov, O. V. Kul’bitskaya, and N. V. Ogol’tsova, Troponoids. 9. Condensation of methyl derivatives of 2-azoniaazulenes with aldehydes, J. Org. Chem. USSR, 5, 2179–2180 (1969).Google Scholar
  141. 140.
    Yu. L. Briks and N. N. Romanov, Polymethine dyes based on 2-azoniaazulene, Chem. Heterocycl. Cpds., 1994, 173–177.Google Scholar
  142. 141.
    Yu. L. Briks and N. N. Romanov, Polymethine dyes based on cyclohepta[c]pyrrole, Chem. Heterocycl. Cpds., 1990, 1157–1158Google Scholar
  143. 142.
    Yu. L. Briks, A. D. Kachkovskii, and N. N. Romanov, Polymethine dyes based on pyrroloanthrone, Chem. Heterocycl. Cpds., 1990, 1179–1185.Google Scholar
  144. 143.
    Yu. L. Briks, E. K. Mikitenko, and N. N. Romanov, Construction of new nitrogen-containing heterocycles for the synthesis of deeply colored polymethine dyes, Russ. J. Org. Chem., 30, 115–123 (1994).Google Scholar
  145. 144.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage in: Photochromism (G. H. Braum, ed.), chap 3, p. 73, Wiley-Interscience, New York (1971).Google Scholar
  146. 145.
    E. V. Braude and M. A. Gal’bershtam, Styryl-substituted spirochromenes of the indole series, Chem. Heterocycl. Cpds., 1979, 173–179.Google Scholar
  147. 146.
    B. S. Luk’yanov, L. I. Nivorozhkin, V. I. Minkin, and A. V. Metelitsa, New indoline spiropyrans with π-acceptor substituents in the 8′ position, Chem. Heterocycl. Cpds., 1990, 1416–1417.Google Scholar
  148. 147.
    V. Minkin, Structural variation and responses in photochromic properties of spirocyclic molecular systems related to spirobenzopyrans, Mol. Cryst. Liq. Cryst., 246, 9–16 (1994).Google Scholar
  149. 148.
    S. Hayashida. H. Sato, and S. Sugawara, Photochromic evaporated films of spiropyrans with long alkyl chains, Japan. J. Appl. Phys., 24, 1436–1439 (1985).CrossRefGoogle Scholar
  150. 149.
    F. P. Shvartsman and V. A. Krongauz, Quasi-liquid crystals of thermochromic spiropyrans. A material intermediate between supercooled liquids and mesophases, J. Phys. Chem., 88, 6448–6453 (1984).CrossRefGoogle Scholar
  151. 150.
    A. Morinaka, T. Yoshida, and N. Funakoshi, Photochromic mechanisms in deposited spiran thin film, Japan. J. Appl. Physics, 26,Suppl. 26–4, 87–90 (1987).Google Scholar
  152. 151.
    T. Yoshida, A. Morinaka, and N. Funakoshi, UV Light assisted vacuum deposition of spiropyran compounds, Thin Solid Films, 162, 343–352 (1988).CrossRefGoogle Scholar
  153. 152.
    K. Matsui and S. Yoshida, Photochromic film of 6-nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] prepared by plasma polymerization, J. Appl. Phys., 64, 2607–2610 (1988).Google Scholar
  154. 153.
    T. Yoshida and A. Morinaka, Irreversible photochromism of spiropyran films at low temperatures, J. Photochem. Photobiol. A: Chem., 78, 179–183 (1994).CrossRefGoogle Scholar
  155. 154.
    D. A. Holden, H. Ringsdorf, V. Deblauwe, and G. Smets, Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface, J. Phys. Chem., 88, 716–720 (1984).CrossRefGoogle Scholar
  156. 155.
    A. Zelichenok, F. Buchholtz, J. Ratner, E. Fischer, and V. Krongauz, Photochromism of undercooled melts of spirooxazines, J. Photochem. Photobiol. A: Chem., 77, 201–206 (1994).CrossRefGoogle Scholar
  157. 156.
    P. Uznanski, J. Pecherz, and M. Kryszewski, Spiropyrans as counterions in photochrome-containing polyelectrolyte, Mol. Cryst. Liq. Cryst., 246, 351–354 (1994).Google Scholar
  158. 157.
    A. Miyashita, S. Nakano, M. Hirano, and H. Nohira, Negative photochromic polymers. Synthesis and photochemical properties of poly(methyl methacrylate) having spirobenzoselenazolinobenzopyran side groups, Chem. Lett., 1993, 501–504.Google Scholar
  159. 158.
    L. V. Natarajan, T. J. Bunning, and S. Y. Kim, Photochromic liquid crystalline cyclic siloxanes containing spiropyran groups, Macromolecules, 27, 7248–7253 (1994).CrossRefGoogle Scholar
  160. 159.
    O. Pieroni, A. Fissi, F. Ciardelli, and D. Fabbri, Spiropyran-containing poly(L-glutamic acid). Photochromic and conformational behavior in acid conditions, Mol. Cryst. Liq. Cryst., 246, 191–194 (1994).Google Scholar
  161. 160.
    A. V. Lyubimov, N. L. Zaichenko, V. S. Marevstev, and M. I. Cherkashin, Indolinospiropyrans with two polymerizable groups, Bull. Acad. Sci. USSR, Chem. Ser., 1982, 585–587.Google Scholar
  162. 161.
    H. Sato, H. Shinohara, M. Kobayashi, and T. Kiyokawa, Decomposition of merocyanine aggregates into monomers in UV-irradiated spiropyran solutions as revealed in anomalous absorption decay at the merocyanine monomer band, Chem. Lett., 1991, 1205–1208.Google Scholar
  163. 162.
    Y. Onai, K. Kasatani, M. Kobayashi, H. Shinohara, and H. Sato, Long-lived colored merocyanine conformers in the aggregates formed on UV irradiation of spiropyran. A Raman spectroscopic study, Chem. Lett., 1990, 1809–1812.Google Scholar
  164. 163.
    J. L. Albert, J. P. Bertigny, J. Aubard, R. Dubest, and J. E. Dubois, Kinetic and Raman study of the opening processes of an indoline spiropyran, J. Chim. Phys., 82, 521–525 (1985).Google Scholar
  165. 164.
    J. Miyazaki, E. Ando, K. Yoshino, and K. Morimoto, Optical high density recording mediums, method for making same and method for recording optical information in the medium, U.S. Pat. 4,737,427, 8 pp., Apr. 12, 1988.Google Scholar
  166. 165.
    E. Ando, J. Miyazaki, and K. Morimoto, J-aggregation of photochromic spiropyran in Langmuir-Blodgett films, Thin Solid Films, 133, 21–28 (1985).CrossRefGoogle Scholar
  167. 166.
    G. Pepe, D. Siri, A. Samat, E. Pottier, and R. Guglielmetti, Modeling of spiropyran aggregates with the help of GenMol program, Mol. Cryst. Liq. Cyst., 246, 247–250 (1994).Google Scholar
  168. 167.
    S. Schneider, H. Grau, J. Ringer, and M. Melzig, Surface-enhanced resonance Raman studies of spiropyrans (BIPS and derivatives), Mol. Cryst. Liq. Cryst., 246, 267–274 (1994).Google Scholar
  169. 168.
    J. Aubard, C. M’Bossa, J. P. Bertigny, R. Dubest, G. Levi, E. Boschet, and R. Guglielmetti, Surface enhanced Raman spectroscopy of photochromic spirooxazines and related spiropyrans, Mol. Cryst. Liq. Cryst., 246, 275–278 (1994).Google Scholar
  170. 169.
    H. Takahashi, H. Murakawa, Y. Sakaino, T. Ohzeki, J. Abe, and O. Yamada, Time-resolved resonance Raman studies of the photochromic reaction of 6-nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline], J. Photochem. Photobiol. A: Chem., 45, 233–241 (1988).CrossRefGoogle Scholar
  171. 170.
    T. Yuzawa and H. Takahashi, Time-resolved resonance Raman and absorption spectroscopies of reaction intermediates in the photochromism of spiropyrans, Mol. Cyst. Liq. Cryst., 246, 279–282 (1994).Google Scholar
  172. 171.
    A. Kellmann, F. Tfibel, E. Pottier, R. Guglielmetti, A. Samat, and M. Rajzmann, Effect of nitro substituents on the photochromism of some spiro[indoline-naphthopyrans] under laser excitation, J. Photochem. Photobiol. A: Chem., 76, 77–82 (1993).CrossRefGoogle Scholar
  173. 172.
    C. Salemi, G. Giusti, and R. Guglielmetti, DABCO effect on the photodegradation of photochromic compounds in spiro[indoline-pyran] and spiro[indoline-oxazine] series, J. Photochem. Photobiol. A: Chem., 86, 247–252 (1995).CrossRefGoogle Scholar
  174. 173.
    G. Baillet, M. Campredon, R. Guglielmetti, G. Giusti, and C. Aubert, Dealkylation of N-substituted indolinospironaphthoxazine photochromic compounds under UV irradiation, J. Photochem. Photobiol. A: Chem., 83, 147–151 (1994).CrossRefGoogle Scholar
  175. 174.
    V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, Oxidative degradation of organic photochromes, Mol. Cryst. Liq. Cryst., 246, 303–310 (1994).Google Scholar
  176. 175.
    G. Baillet, R. Guglielmetti, and G. Giusti, Variation of the bleaching rate of some photochromic compounds under irradiation in toluene, Mol. Cryst. Liq. Cryst., 246, 287–290 (1994).Google Scholar
  177. 176.
    V. Pimienta, G. Levy, D. Lavabre, A. Samat, R. Guglielmetti, and J. C. Micheau, Computer analysis of the thermoreversible photochromism of spiropyran compounds: evaluation of absorption spectrum and quantum yield, Mol. Cryst. Liq. Cryst., 246, 283–286 (1994).Google Scholar
  178. 177.
    J.-W. Zhou, Y.-T. Li, and X.-Q. Song, Investigation of the chelation of a photochromic spiropyran with Cu(II), J. Photochem. Photobiol. A: Chem., 87, 37–42 (1995).CrossRefGoogle Scholar
  179. 178.
    L. Atabekyan and A. Chibisov, Spiropyran complexes with metal ions. Kinetics of complexation, photophysical properties and photochemical behavior, Mol. Cryst. Liq. Cryst., 246, 262–266 (1994).Google Scholar
  180. 179.
    T. Kuwahara, H. Tagaya, and K. Chiba, Photochromism of spiropyran dye in Li-Al layered double hydroxide, Micropor. Mat., 4, 247–250 (1995).Google Scholar
  181. 180.
    C. J. Roxburgh and P. G. Sammes, On the acid catalyzed isomerisation of some substituted spirobenzopyrans, Dyes Pigm., 27, 63–69 (1995).CrossRefGoogle Scholar
  182. 181.
    D. Preston, J.-C. Pouxviel, T. Novinson, W. C. Kaska, B. Dunn, and J. I. Zink, Photochromism of spiropyrans in aluminosilicate gels, J. Phys. Chem., 94, 4167–4172 (1990).CrossRefGoogle Scholar
  183. 182.
    D. Levy and D. Avnir, Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans, J. Phys. Chem., 92, 4734–4738 (1988).CrossRefGoogle Scholar
  184. 183.
    B. Ya. Simkin, S. P. Makarov, V. I. Minkin, and V. A. Pichko, Photo-and thermochromic spirans. 18. Theoretical study of the mechanisms of the photocolorization and photodecolorization of 2H-pyrans and their structural analogs. Triplet state, Chem. Heterocycl. Cpds., 1991, 250–255.Google Scholar
  185. 184.
    V. Malatesta, L. Longo, R. Fusco, and G. Marconi, Comparison of photochromic behavior between spiroxazines and spiropyrans: theoretical calculations of ground and excited states, Mol. Cryst. Liq. Cryst., 246, 235–239 (1994).Google Scholar
  186. 185.
    H. Pommier, A. Samat, R. Guglielmetti, M. Rajzmann, and G. Pepe, Investigation of some photochromic structures by molecular mechanics and SCF MO calculations, Mol. Cryst. Liq. Cryst., 246, 241–246 (1994).Google Scholar
  187. 186.
    S. Nakamura, K. Uchida, A. Murakami, and M. Irie, Ab initio MO and 1H NMR NOE studies of photochromic spironaphthoxazine, J. Org. Chem., 58, 5543–5545 (1993).Google Scholar
  188. 187.
    F. Dietz and A. V. El’tsov, Theoretical studies of the photochromism of organic compounds, in: Organic Photochromes (A. V. El’tsov, ed.), pp. 1–21, Consultants Bureau, New York (1990).Google Scholar
  189. 188.
    R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 252–253, Wiley-Interscience, New York (1971).Google Scholar
  190. 189.
    K. Otocan, L. Loncar, M. Mintas, T. Trötsch and A. Mannschreck, Chiral chromenes: synthesis, separation of enantiomers and barriers to racemization, Croat. Chim. Acta, 66, 209–219 (1993).Google Scholar
  191. 190.
    W. Zelenka, A. Leimer, and A. Mannschreck, A new type of polarimetric HPLC detector, GIT Fachzeitschr. Lab., 37, 97–103 (1993).Google Scholar
  192. 191.
    B. Stephan, H. Zinner, F. Kastner, and A. Mannschreck, Enantiomers of 2,2′-spirobichromenes: energy barrier for thermal racemization during HPLC on tribenzoylcellulose, Chimia, 44, 336–338 (1990).Google Scholar
  193. 192.
    B. Stephan, A. Mannschreck, N. A. Voloshin, N. V. Volbushko, and V. I. Minkin, Separation and photoinduced transformations of the enantiomers of 3′,3′-dimethylspiro[2H-1-benzopyran-2,1′-(2)oxaindans], Tetrahedron Lett., 31, 6335–6338 (1990).CrossRefGoogle Scholar
  194. 193.
    A. Leiminer, B. Stephan, and A. Mannschreck, The enantiomers of indolino spiro compounds. Barriers to thermal cleavage of their C(sp3)-O bond., Mol. Cryst. Liq. Cryst., 246, 215–221 (1994).Google Scholar
  195. 194.
    C. Reichardt, H.-D. Engel, R. Allmann, D. Kucharczyk, and M. Krestel, Synthesis, structure and properties of novel chain-substituted and chiral trimethinecyanine dyes with indoline end groups, Chem. Ber., 123, 565–581 (1990).Google Scholar
  196. 195.
    C. Reichardt and U. Budnik, Synthesis and spectroscopic properties of an unsymmetrical, chiral monomethinecyanine dye with a thiazolyl and quinolyl end group, Liebigs Ann., 1994, 927–930.Google Scholar
  197. 196.
    R. C. Bertelson, Reminiscences about organic photochromics, Mol. Cryst. Liq. Cryst., 246, 1–8 (1994).Google Scholar
  198. 197.
    J. C. Crano, C. N. Welch, B. VanGemert, D. Knowles, and B. Anderson, Photochromic organic compounds in polymer matrices, in: Photochemistry and Polymeric Systems (J. M. Kelly, C. B. McArdle, and M. J. de F. Maunder, eds.), pp. 179–193, Royal Society of Chemistry, Cambridge (1993).Google Scholar
  199. 198.
    J. Larsen and K. G. Roesner, Optical flow-velocity measurement in irregularly shaped cavities, in: Recent Contributions to Fluid Mechanics (W. Haase, ed.), pp. 161–169, Springer-Verlag, Berlin (1982).Google Scholar
  200. 199.
    M. Fermigier and P. Jenffer, Flow visualization by photochromic dyes. Application to the motion of a fluid-fluid interface, in: Flow Visualization IV, Proc. Int. Symp. 4th, 1986, (C. Veret, ed.), pp. 153–158, Hemisphere, Washington, DC (1987).Google Scholar
  201. 200.
    V. Croquette, P. Le Gal, A. Pocheau, and R. Guglielmetti, Large-scale characterization in a Rayleigh-Bénard convective pattern, Europhys. Lett., 1, 393–399 (1986).Google Scholar
  202. 201.
    P.-F. Cevey and U. von Stockar, A tracer system based on a photochromic dye and on fiber optics for measuring axial dispersion of organic liquids in pilot-scale packed columns, Chem. Eng. J., 31, 7–13 (1985).Google Scholar
  203. 202.
    W. W. Fowlis, Remote optical techniques for liquid flow and temperature measurement for Spacelab experiments, Opt. Eng., 18, 281–286 (1979).Google Scholar
  204. 203.
    J. Hutchins, G. Johnson, and E. Marschall, Flow visualization in two-phase flow, Meas. Tech. Gas-Liq. Two-Phase Flows, Symp. 1983 (J. M. Delhaye and G. Cognet, eds.), pp. 91–102, Springer-Verlag, Berlin (1984).Google Scholar
  205. 204.
    J. Hutchins, J. Esdorn, G. Johnson, and E. Marschall, Flow visualization in liquid-liquid directcontact heat transfer equipment, Flow Visualization, Proc. Int. Symp. 3rd 1983 (W.-J. Yang, ed.), pp.748–752, Hemisphere, Washington, DC (1985).Google Scholar
  206. 205.
    P. Douglas, Photosensitive materials for use in velocity profile measurements in the water phase of air-water systems and in single phase liquid systems, Chem. Eng. Technol, 14, 275–287 (1991).CrossRefGoogle Scholar
  207. 206.
    C. J. Chen, Y. G. Kim, and J. A. Walter, Recent developments in quantitative flow visualization and imaging processes, Flow Model. Turbul. Meas., 1992, 17–28.Google Scholar
  208. 207.
    G. G. Couch, H. Park, M. Ojha, and R. L. Hummel, Flow visualization using photochromic grids, Proc. SPIE, 1801, 678–686 (1993).Google Scholar
  209. 207a.
    K. G. Roesner, Flow field visualization by photochromic coloring, Mol. Cryst. Liq. Cryst., 298, 243–250 (1997).Google Scholar
  210. 208.
    E. Zahavy, S. Rubin, and I. Willner, Conformational dynamics associated with photoswitchable binding of spiropyran-modified concanavalin A, Mol. Cryst. Liq. Cryst., 246, 195–199 (1994).Google Scholar
  211. 209.
    A. Miyashita, M. Hirano, S. Nakano, and H. Nohira, Diode-laser susceptible photochromic polymers: synthesis and photochemical properties of poly(methyl methacylate) with spirobenzothiopyrans as side-groups, J. Mater. Chem., 3, 221–222 (1993).CrossRefGoogle Scholar
  212. 210.
    V. A. Krongauz, Environmental effects on organic photochromic systems, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), pp. 793–821, Elsevier, Amsterdam (1990).Google Scholar
  213. 211.
    G. Smets, Photochromic phenomena in the solid phase, in: Advances in Polymer Science, Vol. 50, pp. 17–44, Springer-Verlag, Berlin (1983).Google Scholar
  214. 212.
    V. Krongauz, Photochromic polymers, Mol. Cryst. Liq. Cryst., 246, 339–346 (1994).Google Scholar
  215. 213.
    K. Ichimura, Photoregulation of liquid crystal alignment induced by polarization photochromism of molecular films, Mol. Cryst. Liq. Cryst., 246, 331–338 (1994).Google Scholar
  216. 214.
    A. S. Dvornikov and P. M. Rentzepis, Photochromism: Nonlinear picosecond kinetics and 3D computer memory, Mol. Cryst. Liq. Cryst., 246, 379–388 (1994).Google Scholar
  217. 215.
    V. Weiss, A. A. Friesem, and V. A. Krongauz, Holographic recording and all optical modulation in photochromic polymers, Opt. Lett., 18, 1089–1091 (1993).Google Scholar
  218. 216.
    R. M. Tarkka, M. E. Talbot, D. J. Brady, and G. B. Schuster, Holographic storage in a near-ir sensitive photochromic dye, Opt. Commun., 109, 54–58 (1994).CrossRefGoogle Scholar
  219. 217.
    M.-A. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, Multiple optical memory using photochromic spiropyran aggregates, Mol. Cryst. Liq. Cryst., 246, 389–396 (1994).Google Scholar
  220. 218.
    J. J. Robillard and M. Srinivasan, The role of photochromism in molecular engineering, Mol. Cryst. Liq. Cryst., 246, 401–404 (1994).Google Scholar
  221. 219.
    M. A. Gal’bershtam and N. P. Samoilova, Synthesis of 1,3-dimethyl-3-phenylspiro[indoline-2,2′-(2′H-1-benzopyran)]s and an investigation of the electronic absorption spectra of their merocyanine forms, Chem. Heterocycl. Cpds., 1973, 1098–1100.Google Scholar
  222. 220.
    M. Nakazaki, Mechanism of Plancher’s rearrangement. II. Twofold Wagner-Meerwein-type rearrangement of indolenium compounds, Bull. Chem. Soc. Jpn. 33, 472–475 (1960).Google Scholar
  223. 221.
    H. Leuchs, A. Heller, and A. Hoffmann, On rearrangement reactions of indolenines, III. On a process of ketone cleavage of acetoacetic esters, Berichte, 62, 871 (1929).Google Scholar
  224. 222.
    S. J. Angyal, P. J. Morris, J. R. Tetaz, and J. G. Wilson, The Sommelet reaction. Part III. The choice of solvent and the effect of substituents, J. Chem. Soc., 1950, 2141–2145.Google Scholar
  225. 223.
    S. J. Angyal, The Sommelet reaction, in: Organic Reactions (R. Adams, ed.), Vol. 8, pp. 197–217, Wiley, New York (1954).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert C. Bertelson
    • 1
  1. 1.Chroma Chemicals Inc.DaytonUSA

Personalised recommendations