Model Based Sequential Experimental Design for Bioprocess Optimisation — an Overview

  • Ralph Berkholz
  • Reinhard Guthke
Part of the Focus on Biotechnology book series (FOBI, volume 4)

Summary

Model based experimental design for bioprocess optimisation requires transparent, understandable, identifiable models considering the physiological states necessary to obtain high product yields. Knowledge and data based hybrid modelling techniques are suitable to build such models. Two concepts of model based experimental design called direct and indirect experimental design are established. The direct design focuses on experiments being optimal with respect to the process performance but ignoring the relevance of the parameter estimation accuracy. Contrarily the indirect design leads to precise parameter estimates, but may result in unproductive fermentation runs worthless with respect to model validation. Due to the disadvantages of these two design methods the concept of A-optimal experimental design was developed. This approach enables experimentalists to suggest experimental set-ups optimal in productivity and parameter estimation accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, R., H.B. Verbruggen and H.J.L. Can, 1999, Fuzzy Modelling of Enzymatic Penicillin-G Conversion, Engineering Applications of Artificial Intelligence, 12, 59–78.Google Scholar
  2. Baltes, M., R. Schneider, C. Sturm and M. Reuss, 1994, Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models. Biotechnol. Prog. 10, 480–488.Google Scholar
  3. Berkholz, R., R. Guthke and W. Schmidt-Heck, 1999, Sequentielle Versuchsplanung zur Optimierung von Bioprozessen mit Produktbildung im Übergangszustand, DECHEMA/GVC-Tagung “Wechselwirkung zwischen Biologie und Prozeßführung”, Erfurt, 10.–11.5.1999.Google Scholar
  4. Berkholz, R., R. Guthke, W. Schmidt-Heck and D. Röhlig, 2000a, Experimental Design for Bioprocess Optimisation: Numerical and Experimental Results, Int. Symp. Biotechnology, Berlin, 3.–8.9.2000.Google Scholar
  5. Berkholz, R., R. Guthke and D. Röhlig, 2000b, Data and Knowledge Based Experimental Design for Bioprocess Optimisation, Enzyme and Microbial Technology, in press.Google Scholar
  6. Bezdek, J., 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York.Google Scholar
  7. Galvanauskas, R., R. Simutis, N. Volk and A. Lübbert, 1998, Model Based Design of a Biochemical Cultivation Process, Bioprocess Eng., 18, 227–234.Google Scholar
  8. Glassey, J., G.A. Montague, A.C. Ward and B.V. Kara, 1994, Artificial Neural Network Based Experimental Design for Enhancing Fermentation Development, Biotechnol. Bioeng., 44, 397–405.Google Scholar
  9. Guthke, R. and R. Roß 1991, Fermentation Analysis by Clustering. Bioprocess Eng., 6, 157–161.Google Scholar
  10. Guthke, R., 1992, Learning Rules from Fermentation Data, In: Karim, M.N. and G. Stephanopoulos (Eds.), Modelling and Control of Biotechnical Processes, Colorado, USA, 403–405.Google Scholar
  11. Guthke R. and B. Ludwig, 1994, Generation of Rules for Expert Systems by Statistical Methods of Fermentation Data Analysis, Acta Biotechnol., 14, 13–26.Google Scholar
  12. Guthke, R., W. Schmidt-Heck and M. Pfaff, 1998, Knowledge Acquisition and Knowledge Based Control in Bioprocess Engineering, J. Biotechnol., 65, 37–46.Google Scholar
  13. Holmberg, A., 1982, On the Practical Identifiability of Microbial Growth Models Incorporating Michaelis-Menten Type Nonlinearities, Math. Biosci., 60, 23–43.Google Scholar
  14. Holmberg, A., 1983, On Accuracy of Estimating the Parameters of Models Containing Michaelis-Menten Type Nonlinearities, In: Vansteenkiste, G.C. and P.C. Young (Eds.), Modelling and Data Analysis in Biotechnology and Medical Engineering, North-Holland Publishing Company.Google Scholar
  15. Ljung, L., 1987, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs.Google Scholar
  16. Munack, A., 1985, On the Parameter Identification for Complex Biotechnical Systems, Proc. 1st IFAC Symp. Modelling and Control of Biotechnological Processes, Noordwijkerhout, 159–165.Google Scholar
  17. Munack, A., 1995, Simulation bioverfahrenstechnischer Prozesse, In: Schuler, H. (Eds.), Prozcßsimulation VCH, Weinheim, New York, Basel, Cambridge.Google Scholar
  18. Nihtilä, M. and J. Virkkunen, 1977, Practical Identifiability of Growth and Substrate Consumption Models, Biotechnol. Bioeng., 19, 1831–1850.Google Scholar
  19. Posten, C. and A. Munack, 1990, Improved Modelling of Plant Cell Suspension Cultures by Optimum Experiment Design, Preprints of the 11th IFAC World Congress “Automatic Control in the Service of Mankind”, Tallinn, Estonia.Google Scholar
  20. Schneider, R., 1999, Untersuchung eines adaptiven prädiktiven Regelungsverfahrens zur Optimierung von bioverfahrenstechnischen Prozessen, Dissertation, VDI-Verlag, Düsseldorf.Google Scholar
  21. Syddall, M.T., G.C. Paul and C.A. Kent, 1998, Improving the Estimation of Parameters of Penicillin Fermentation Models, Preprints of the 7th International Conference on Computer Applications in Biotechnology, 23–28, Osaka, Japan.Google Scholar
  22. Takors, R., W. Wiechert and D. Weuster-Botz, 1997, Experimental Design for the Identification of Macrokinetic Models and Model Discrimination, Biotechn. Bioeng., 56, 564–576.Google Scholar
  23. Versyck, K.J., J.E. Claes and J.F. Van Impe, 1997, Practical Identification of Unstructured Growth Kinetics by Application of Optimal Experimental Design, Biotechnol. Prog., 13, 524–531.Google Scholar
  24. Zadeh, L., A., 1965, Fuzzy Sets, Information and Control, 8, 338–353.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ralph Berkholz
    • 1
  • Reinhard Guthke
    • 2
  1. 1.BioControl Jena GmbHJenaGERMANY
  2. 2.Hans Knoll Institute for Natural Products ResearchJenaGERMANY

Personalised recommendations