The Antibiotic Gallidermin-Evolution of a Production Process

  • Markus Kempf
  • Uwe Theobald
  • Hans-Peter Fiedler
Part of the Focus on Biotechnology book series (FOBI, volume 1)


Liquid Culture Product Formation Shake Flask Product Concentration Meat Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benz, R., Jung, G. and Sahl, H.-G. (1991) Mechanism of channel-formation by lantibiotics in black lipid nienibranes in Jung, G. and Sahl, H.-G. (eds.), Nisin and Novel Lantibiotics, ESCOM, Leiden, pp. 359–372.Google Scholar
  2. Börtz, H., Bierbaum, K., Reynolds, P.E. and Sahl, H.-G. (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation, Eur. J. Biochem. 246, 193–199.Google Scholar
  3. Börtz, H., Bierbaum, G., Leopold, K., Reynolds, P.E. and Said H.-G. (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II, Antimicrob. Agents Chemother. 42, 154–160.Google Scholar
  4. Bierbaum, G., Götz, F., Peschcl, A., Kupke, T., van de Kamp, M. and Sahl, H.-G. (1996) The biosythesis of the lantibiotics epiderinin, gallidermin, Pep5 and epilancin K7, Antonie von Leeuwenhoek 69, 119–127.Google Scholar
  5. Breckel, A., Harder, M., Fiedler, H.-P. and Zahner, H. (1995) Production of gallidermin by Staphylococcus gallinarum Tü3928, in Schmid, R.D. (Ed.), Biochemical Engeneering 3, Kurz, Stuttgart, pp 62–66.Google Scholar
  6. Devrieses, L.A., Poutrel, B., Kilpper-Bälz, R. and Schleifer, K.H. (1983) Staphylococcus gallinarum and Stuphylococcus caprae, two new species from animals, Int. J. Syst. Bacteriol. 33, 480–486.Google Scholar
  7. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Welsley Publishing, Reading, Massachusetts.Google Scholar
  8. Hörner, T., Ungermann, V., Zähner, H., Fiedler, H.-P., Utz, R., Kellner, R. and Jung G. (1990) Comparative studies on the fermentative production of lantibiotics by staphylococci, Appl. Microbiol. Biotechn. 32, 511–517.Google Scholar
  9. Holland, J.H. (1992) Genetische Algorithmen, Spekt. Wiss. 9.Google Scholar
  10. Hosobuchi. M. and Yoshikawa. H. (1999) Scale-up of microbial processes, in Demain, A.L. and Davies, J.E. (eds.), Manual of Industrial Microbiology and Biotechnology, 2nd edn., ASM Press, Washington, pp 236–239.Google Scholar
  11. Humphry, A. (1998) Shake tlask to fermentor: what have we learned? Biotechno. Prog. 14, 3–7.Google Scholar
  12. Jack, R.W., Bierbaum, G. and Sahl, H.-G. (1998) Lantibiotics and Related Peptides, Springer-Verlag, Heidelberg.Google Scholar
  13. Jung, G. (1991) Lantibiotics: a survey, in Jung, G. and Sahl, H.-G. (eds.), Nisin and Novel Lantibiotics, ESCOM, Leiden, pp. 1–34.Google Scholar
  14. Kellner, R., Jung, G., Hörner, T., Zahner, H., Schnell, N., Entian, K.-D. and Götz, F. (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic, Eur. J. Biochem. 177, 53–59.CrossRefGoogle Scholar
  15. Kempf, M., Theobald, U. and Fiedler H.-P. (1999a) Economic improvement ofthe fermentative production of gallidermin by Staphylococcus gallinarum, Biotechnology Letters 21, 663–667.Google Scholar
  16. Kempf, M., Theobald, U. and Fiedler H.-P. (1999b) Correlation between the consumption of amino acids and the production of the antibiotic gallidermin by Staphylococcus gallinarum, Biotechnology Letters 21, 959–963.Google Scholar
  17. Kempf, M., Theobald, U. and Fiedler H.-P. (2000) Production ofthe antibiotic gallidermin by Staphylococcus gallinarum—development of a scale-up procedure, Biotechnology Letters 22, 123–128.CrossRefGoogle Scholar
  18. Kempf, M., Theobald, U. and Fiedler, H.-P. (1997) Influence of dissolved oxygen on the fermentativ production of gallidermin by Staphylococcus gallinarum, Biotech Letters 19, 1063–1065.Google Scholar
  19. Omura, S. and Tanaka, Y, (1984) Control of ammonium ion level in antibiotic fermentation, in Ortiz-Ortiz, L., Bojalil, L.F. and Yakoleff, V. (eds.), Biological, Biochemical and Biomedical Aspects of Actinomycetes, Academic Press, Orlando, p. 367.Google Scholar
  20. Reuss, M. and Bajpai, R. (1991) Stirred tank models, in Rehm. H.-J. and Reed. G. (eds.), Biotechnology Vol. 4, 2nd edn., VCH, Weinheim, pp 299–348.Google Scholar
  21. Sahl, H.-G., Jack, R., Bierbaum, G. (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications, Eur. J Biochem. 230, 827–853.CrossRefGoogle Scholar
  22. Sanglier, J.J., Wellington, E.M.H., Behal, V., Fiedler, H.P., Ellouz Ghorbel, R., Finance, C., Hacene, M., Kamoun, A., Kelly, C., Mercer, D.K., Prinzis, S. and Trigo, S. (1993) Novel bioactive compounds from actinomycetes, Res. Microbiol. 144, 661–663.Google Scholar
  23. Theobald, U. and Kempf M. (1998) A novel tool for medium optimization and characterization in the early stages of a metabolite production process, Biotechnology Techniques 12, 893–897.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Markus Kempf
  • Uwe Theobald
  • Hans-Peter Fiedler

There are no affiliations available

Personalised recommendations