Advertisement

The Role of Proteolytic Eenzymes in Autoimmune Demyelinating Diseases: An Update

  • Marion Smith

Keywords

Multiple Sclerosis Proteolytic Enzyme Myelin Basic Protein Experimental Allergic Encephalomyelitis Myelin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Smith, The role of proteolytic enzymes in demyelination in experimental encephalomyelitis, Neurochem. Res. 2:233 (1977).CrossRefGoogle Scholar
  2. 2.
    G. Guroff, A neutral, calcium-activated proteinase from the soluble fraction of rat brain, J. Biol. Chem. 239:149 (1964).PubMedGoogle Scholar
  3. 3.
    W. Cammer, B.R. Bloom, W.T. Norton, and S. Gordon, Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: A possible mechanism of inflammatory demyelination, Proc. Natl. Acad. Sci. U.S.A. 75:1554 (1978).PubMedGoogle Scholar
  4. 4.
    K. Nakajima, N. Tsuzaki, M. Shimojo, M. Hamanoue, and L. Kosaka, Microglia isolated from rat brain secrete a urokinase-type plasminogen activator, Brain Res. 577:285(1992).PubMedCrossRefGoogle Scholar
  5. 5.
    R.B. Banati, G. Rothe, G. Valet, and G.W. Kreutzberg, Detection of lysosomal cysteine proteinases in microglia: Flow cytometric measurement and histochemical localization of Cathepsin B. and L Glia 7:183 (1993).PubMedGoogle Scholar
  6. 6.
    D.C. Shields and N.L. Banik, Pathophysiological role of calpain in experimental demyelination, J. Neurosci. Res. 55:553 (1999).CrossRefGoogle Scholar
  7. 7.
    T. Yamada, Y. Yoshiyama, H. Sato, M. Seiki, A. Shinagawa, and M. Takahashi, White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol. 90:421 (1995).PubMedGoogle Scholar
  8. 8.
    P.E. Gottschall, X. Yu, and B. Bing, Increased production of gelatinase B (metalloproteinase-9) and interleukin-6 by activated rat microglia in culture, J. Neurosci. Res. 42:335 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    J.N. Larocca, A. Cervone, and R. W. Ledeen, Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium, Brain Res. 436:357 (1984).Google Scholar
  10. 10.
    C. Linington, M. Webb, and P.L. Woodhams, A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody, J. Neuroimmunol. 6:387 (1984).Google Scholar
  11. 11.
    Y. Yamamoto, R. Mizuno, T. Nishimura, Y. Ogawa, H. Yoshikawa, H. Fujimura, E. Adashi, T. Kishimoto, T. Yanagahara, and S. Sakoda, Cloning and expression of the myelin associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin, J. Biol. Chem. 269:31725 (1994).PubMedGoogle Scholar
  12. 12.
    Y. Itoyama, N.H. Sternberger, H.DeF. Webster, R.H. Quarles, S.R. Cohen, and E.P. Richardson, Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions, Ann. Neurol. 7:167 (1980).PubMedGoogle Scholar
  13. 13.
    N.L. Banik, D. Lobo-Matzelle, G. Gantt-Wlford, and E.L. Hogan, Calpain, A catabolic mediator in spinal cord trauma, in: Neurodegenerative Diseases, G. Fiscum, ed., Plenum Press, New York (1996).Google Scholar
  14. 14.
    H.H. Berlet, Degradation of myelin proteins by proteinases, in: Myelin, Biology and Chemistry, R. Martenson, ed., CRC Press, Ann Arbor (1992).Google Scholar
  15. 15.
    W. Cammer, C.F. Brosnan, C. Basile, B.R. Bloom, and W.T. Norton, Complement potentiates the degradation of myelin proteins by plasmin: Implications for a mechanism of inflammatory demyelination, Brain Res. 364:91 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Vanguri, C.L. Koski, B. Silverman, and M.L. Shin, Complement activation by isolated myelin. Activation of the classical pathway in the absence of myelin-specific antibodies, Proc. Natl. Acad. Sci. U.S.A. 79:3290 (1982).PubMedGoogle Scholar
  17. 17.
    L. Lampeit, Electron microscopic studies on ordinary and hyperacute experimental allergic encephalomyelitis. Acta Neuropathol. 9:99 (1967).Google Scholar
  18. 18.
    H. Lassmann, H. Budka, and G. Schnabeith, Inflammatory demyelinating polyradiculitis in a patient with multiple sclerosis, Arch. Neurol. 38:99 (1981).PubMedGoogle Scholar
  19. 19.
    M.C. Dal, Canto, and H.L. Lipton, Primary demyelination in Theiler’s virus infection. An ultrastructural study, Lab. Invest. 33:626 (1975).Google Scholar
  20. 20.
    J.D. Ballentine, Spinal cord trauma. In search of the granular axoplasm and vesicular myelin. J. Neuropathol. Expt. Neurol. 47:77 (1988).Google Scholar
  21. 21.
    B.C. Keiseier, T. Seifeit, G. Giovannoni, and H.-P. Hartung, Matrix metalloproteinases in inflammatory demyelination. Targets for treatment, Neurology 53:20 (1999).Google Scholar
  22. 22.
    M.L. Cuzner, and G. Opdenakker, Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system, J. Neuroimmunol. 94:1 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    D.C. Shields and N.L. Banik, Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination, Brain Res. 794:68 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Furlan, G. Martino, F. Galbiati, P.L. Poliani, S. Smiroldo, A. Bergami, G. Desina, G. Comi, R. Flavell, M.S. Su, and L. Adorini, Calpase-1 regulates the inflammatory process leading to autoimmune demyelination, J. Immunol. 163:2403 (1999).PubMedGoogle Scholar
  25. 25.
    D.H. Boehme, H. Usezawa, G. Hashim, and N. Marks, Treatment of experimental allergic encephalomyelitis with an inhibitor of cathepsin D (Pepstatin), Neurochem. Res. 3:185 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    C.F. Brosnan, W. Cammer, W.T. Norton, and B.R. Bloom, Proteinase inhibitors supress the development of experimental allergic encephalomyelitis, Nature 285:235 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Nagai, Suppression of demyelination in acute EAE: New strategies for the therapy of EAE and MS. In: Proc. Asian Multiple Sclerosis Workshop, Y. Kurawa, and L.T. Kurland, eds., Kyushu University Press, Fukuoka, Japan (1982).Google Scholar
  28. 28.
    M.E. Smith, and L.A. Amaducci, Observations on the effects of protease inhibitors on the suppression of experimental allergic encephalomyelitis, Neurochem. Res. 7:541 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Gijbels, R.E. Galardy, and L. Steinman, Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloprotase, J. Clin. Invest. 94:2177 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Liedtke, B. Cannella, R.J. Mazzaccaro, J.M. Clements, K.M. Miller, K.W. Wucherpfennig, A.J.H. Gearing, and C.S. Raine, Effective treatment of models of multiple sclerosis by matrix metalloproteinase inhibitors, Ann. Neurol. 44:35 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Marion Smith
    • 1
  1. 1.Department of NeurologyStanford University School of Medicine and Veterans Administration Medical CenterPalo Alto

Personalised recommendations