Advertisement

Genomic Structure of Galectin-9 Gene

Mutation analysis of a putative human urate channel/transporter
  • Juergen Graessler
  • Folker Spitzenberger
  • Anett Graessler
  • Birgit Parpart
  • Eberhard Kuhlische
  • Steffi Kopprasch
  • Hans-Egbert Schroeder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 486)

Conclusion

Elucidation of the genomic structure of the first human electrogenic urate transporting protein will facilitate investigation of its pathogenetic relevance in primary hyperuricemia. Seven missense mutations in 6 exons of galectin-9 gene have been identified so far Their functional consequences remain to be established.

Keywords

Genomic Structure Urate Transport Renal Urate Uric Acid Clearance Renal Uric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Werner, D., Guisan, B, and Roch-Ramel, F, 1991, Urate transport in the proximal tubule of human kidney. Adv Exp Med Biol, 177–180.Google Scholar
  2. 2.
    Roch-Ramel, F., Werner, D., and Guisan, B., 1994, Urate transport in brush-border membrane of human kidney. Am J Physiol, 266(5 Pt 2): F797–805.PubMedGoogle Scholar
  3. 3.
    Roch-Ramel, F. and Diezi, J., 1997, Renal transport of organic ions and uric acid. In Diseases of the kidney, (R.W. Schrier, C.W. Gottschalk, eds.), Little Brown, Boston, USA: pp.231–249.Google Scholar
  4. 4.
    Leal-Pinto, E., Tao, W., Rappaport, J., Richardson, M., Knorr, B.A., and Abramson R.G., 1997, Molecular cloning and functional reconstitution of a urate transporter/channel. J Biol Chem, 272(1): 617–625.PubMedGoogle Scholar
  5. 5.
    Spitzenberger, F., Graessler J., and Schroeder H-E., 1999, Molecular characterization of renal ion transport systems — cloning of a putative urate transporter/channel from cultured LLC-PK1 kidney epithelial cells and human kidney. Cell Mol Biol Lett, 4(3): 475–476.Google Scholar
  6. 6.
    Wada, J. and Kanwar Y.S., 1997, Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin. J Biol Chem, 272(9): 6078–6086.PubMedGoogle Scholar
  7. 7.
    Matsumoto, R., Matsumoto, H., Seki, M., Hata, M., Asano, Y., Kanegasaki, S., Stevens, R.L., and Hirashima, M., 1998, Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes. J Biol Chem, 273(27): 16976–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Graessler, J., Spitzenberger, F., Graessler, A., Parpart, B., Kuhlisch, E., Kopprasch, S., and Schroeder, H-E., 2000, Galectin-9 gene: genomic structure and mutation analysis of a putative human urate channel, submittedGoogle Scholar
  9. 9.
    Matsushita, N., Nishi, N., Seki, M., Matsumoto, R., Kuwabara, I., Liu, F. T., Hata, Y., Nakamura, T., and Hirashima, M., 2000, Requirement of divalent galactoside-binding activity of Ecalectin/Galectin-9 for eosinophil chemoattraction. J Biol Chem, 275(12): 8355–60.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Juergen Graessler
    • 1
  • Folker Spitzenberger
    • 1
  • Anett Graessler
    • 1
  • Birgit Parpart
    • 1
  • Eberhard Kuhlische
    • 2
  • Steffi Kopprasch
    • 1
  • Hans-Egbert Schroeder
    • 1
  1. 1.Department of Internal Medicine III, Pathological BiochemistryUniversity of Technology DresdenDresdenGermany
  2. 2.Institute of Medical Biometrics and Genetic Epidemiology, Carl Gustav Carus Medical SchoolUniversity of Technology DresdenDresdenGermany

Personalised recommendations