Trimethylamine Dehydrogenase and Electron Transferring Flavoprotein

  • Nigel S. Scrutton
  • Michael J. Sutcliffe
Part of the Subcellular Biochemistry book series (SCBI, volume 35)


Electron Transfer Flavin Adenine Dinucleotide Intramolecular Electron Transfer Methylotrophic Bacterium Semiquinone Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. Anthony, C., 1986, Bacterial oxidation of methane and methanol, Adv. Microb. Physiol. 27:113–210.CrossRefPubMedGoogle Scholar
  2. Barber, M. J., Neame, P. J., Lim, L. W., White, S., and Matthews, F. S., 1992, Correlation of x-ray deduced and experimental amino acid sequences of trimethylamine dehydrogenase, J. Biol. Chem. 267:6611–6619.PubMedGoogle Scholar
  3. Barber, M. J., Pollock, V., and Spence, J. T., 1988, Microcoulometric analysis of trimethylamine dehydrogenase, Biochem. J. 256:657–659.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basran, J., Mewies, M., Mathews, F. S., and Scrutton, N. S., 1997, Selective modification of alkylammonium ion specificity in trimethylamine dehydrogenase by the rational engineering of cation-π bonding, Biochemistry 36:1989–1998.CrossRefPubMedGoogle Scholar
  5. Basran, J., Sutcliffe, M. J., Hille, R., and Scrutton, N. S., 1999a, Reductive half-reaction of the H172Q mutant of trimethylamine dehydrogenase: evidence against a carbanion mechanism and assignment of kinetically influential ionizations in the enzyme-substrate complex, Biochem. J. 341:307–314.PubMedPubMedCentralGoogle Scholar
  6. Basran, J., Sutcliffe, M. J., Hille, R., and Scrutton, N. S., 1999b, The role of Tyr 169 of trimethylamine dehydrogenase in substrate oxidation and magnetic interaction between FMN cofactor and the 4Fe/4S center, J. Biol. Chem. 274:13155–13161.CrossRefPubMedGoogle Scholar
  7. Basran, J., Sutcliffe, M. J., and Scrutton, N. S., 1999c, Enzymatic H-transfer requires vibration-driven extreme tunneling, Biochemistry 38:3218–3222.CrossRefPubMedGoogle Scholar
  8. Bellamy, H. D., Lim, L. W., Mathews, F. S., and Dunham, W. R., 1989, Studies of crystalline trimethylamine dehydrogenase in three oxidation states and in the presence of substrate and inhibitor, J. Biol. Chem. 264:11887–11892.PubMedGoogle Scholar
  9. Bork, P. J., Gellerich, H., Groth, R., Hooft, A., and Martin, F., 1995, Divergent evolution of a beta/alpha barrel subclass: detection of numerous phosphate-binding sites by motif search, Protein Sci 4:268–274.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boyd, G., Mathews, F. S., Packman, L. C., and Scrutton, N. S., 1992, Trimethylamine dehydrogenase of bacterium W3 A1. Molecular cloning, sequence determination and over-expression of the gene, FEBS Lett 308:271–276.CrossRefPubMedGoogle Scholar
  11. Bruno, W. J., and Bialek, W., 1992, Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer, Biophys. J. 63:689–699.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen, D. W., and Swenson, R. P,1994, Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3 A1 electron transfer flavoprotein, J. Biol. Chem. 269:32120–32130.PubMedGoogle Scholar
  13. Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J., 1998, Major structural reorganisation most likely accompanies the transient formation of a physiological electron transfer complex, Prot. Pept. Lett 5:231–236.Google Scholar
  14. Colby, J., and Zatman, L. J., 1973, Trimethylamine metabolism in obligate and facultative methylotrophs, Biochem. J. 132:101–112.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Colby, J., and Zatman, L. J., 1974, Purification and properties of the trimethylamine dehydrogenase of bacterium 4B6, Biochem. J. 143:555–567.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Colby, J., and Zatman, L. J., 1975, Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation in obligate methylotrophs and restricted facultative methylotrophs, Biochem. J. 148:513–520.CrossRefPubMedPubMedCentralGoogle Scholar
  17. DíSilva, C. D., Williams, C. H., and Massey, V., 1987, Identification of methionine-110 as the residue covalently modified in the electrophilic inactivation of D-amino-acid oxidase by O-(2,4-dinitrophenyl) hydroxylamine, Biochemistry, 26:1717–1722.CrossRefGoogle Scholar
  18. Denu, J. M., and Fitzpatrick, P. F., 1994, Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism, Biochemistry 33:4001–4007.CrossRefPubMedGoogle Scholar
  19. Eady, R. R., Jarman, T. R., and Large, P. J., 1971, Microbial oxidation of amines. Partial purification of a mixed function secondary amine oxidase system from Pseudomonas aminovorans that contains an enzymically active cytochrome P-420 type hemoprotein, Biochem. J. 125:449–459.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edmondson, D. E., 1995, Aminium cation radical mechanism proposed for monoamine oxidase B catalysis: are there alternatives?, Xenobiotica 25:735–753.CrossRefPubMedGoogle Scholar
  21. Ertughrul, O. W., Errington, N., Raza, S., Sutcliffe, M. J., Rowe, A. J., and Scrutton, N. S., 1998, Probing the stabilizing role of C-terminal residues in trimethylamine dehydrogenase, Protein Eng. 11:447–455.CrossRefPubMedGoogle Scholar
  22. Falzon, L., and Davidson, V. L., 1996, Kinetic model for the regulation by substrate of intramolecular electron transfer in trimethylamine dehydrogenase, Biochemistry 35:2445–2452.CrossRefPubMedGoogle Scholar
  23. Fournel, A., Gambarelli, S., Guigliarelli, B., More, C., Asso, M., Chouteau, G., Hille, R., and Bertrand, P., 1998, Magnetic interactions between a [4Fe-4S]+ cluster and a FMN radical in the enzyme trimethylamine dehydrogenase: a high-field epr study, J. Chem. Phys. 109:10905–10913.CrossRefGoogle Scholar
  24. Franklund, C. F., Baron, S. F., and Hylemon, P. B., 1993, Characterisation of the bai H gene encoding a bile acid-inducible NADH: flavin oxidoreductase from Eubacterium sp. VPI 12708, J. Bacteriol. 175:3002–3012.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ghisla, S., Kenney, W. R., Knappe, W. R., McIntire, W. S., and Singer, T. P., 1980, Chemical synthesis and some properties of 6-substituted flavins, Biochemistry 19:2537–2544.CrossRefPubMedGoogle Scholar
  26. Ghisla, S., and Massey, V., 1980, Studies on the catalytic mechanism of lactate oxidase. Formation of enantiomeric flavin-N(5)-glycollyl adducts via carbanion intermediates, J. Biol. Chem. 255:5688–5696.PubMedGoogle Scholar
  27. Ghisla, S., and Massey, V., 1989, Mechanisms of flavoprotein-catalyzed reactions, Eur. J. Biochem. 181:1–17.CrossRefPubMedGoogle Scholar
  28. Harris, R. J., Meskys, R., Sutcliffe, M. J., and Scrutton, N. S., 2000, Kinetic studies of the mechanism of CóH bond breakage by the heterotetraneric sarcosine oxidase of Arthrobacter sp 1-IN, Biochemistry 39:1189–1198.CrossRefPubMedGoogle Scholar
  29. Hasford, J. J., Kemnitzer, W., and Rizzo, C. J., 1997, Conformational effects on flavin redox chemistry, J. Org. Chem. 62:5244–5245.CrossRefGoogle Scholar
  30. Hill, C. L., Steenkamp, D. J., Holm, R. H., and Singer, T. P., 1977, Identification of the iron-sulfur center in trimethylamine dehydrogenase, Proc. Natl. Acad. Sci. USA 74:547–551.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hille, R., and Stewart, R., 1984, The inhibition of xanthine oxidase by 8-bromoxanthine, J. Biol. Chem. 259:1570–1576.PubMedGoogle Scholar
  32. Huang, L., Rohlfs, R. J., and Hille, R., 1995, The reaction of trimethylamine dehydrogenase with electron transferring flavoprotein, J. Biol. Chem. 270:23958–23965.CrossRefPubMedGoogle Scholar
  33. Huang, L., Scrutton, N. S., and Hille, R., 1996, Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine, J. Biol. Chem. 271:13401–13406.CrossRefPubMedGoogle Scholar
  34. Husain, M., and Davidson, V. L., 1987, Purification and properties of methylamine dehydrogenase from Paracoccus denitrificans, J. Bacteriol. 169:1712–1717.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jang, M.-H., Basran, J., Scrutton, N. S., and Hille, R., 1999a, The reaction of trimethylamine dehydrogenase with trimethylamine, J. Biol. Chem. 274:13147–13154.CrossRefPubMedGoogle Scholar
  36. Jang, M.-H., Scrutton, N. S., and Hille, R., 2000, Formation of W3A1 ETF hydroquinone in the TMADH/ETF protein complex, J. Biol. Chem. 275:12546–12552.CrossRefPubMedGoogle Scholar
  37. Kenney, W. C., McIntire, W., and Steenkamp, D. J., 1978, Amino acid sequence of a cofactor peptide from trimethylamine dehydrogenase, FEBS Lett 85:137–40.CrossRefPubMedGoogle Scholar
  38. Kim, J.-M., Bogdon, M. A., and Mariano, P. S., 1993, Mechanistic analysis of the 3-methyllumiflavin-promoted oxidative deamination of benzylamineóa potential model for monoamine oxidase catalysis, J. Am. Chem. Soc. 115:10591–10595.CrossRefGoogle Scholar
  39. Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P., 1999, Enzyme dynamics and hydrogen tunneling in a thermophilic alcohol dehydrogenase, Nature 399:496–499.CrossRefPubMedGoogle Scholar
  40. Large, P. J., 1981, Microbial growth on methylated amines, in: Microbial growth on C1 compounds: proceedings of the third international symposium (H. Dalton, ed.), Heyden and Son, London, pp. 55–69.Google Scholar
  41. Levering, P. R., van Dijken, J. P., Veenhuis, M., and Harder, W., 1981, Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines Arch. Microbiol. 129:72–80.CrossRefPubMedGoogle Scholar
  42. Lim, L. W., Mathews, F. S., and Steenkamp, D. J., 1982, Crystallographic study of the iron-sulfur flavoprotein trimethylamine dehydrogenase from the bacterium W3A1, J. Mol. Biol. 162:869–876.CrossRefPubMedGoogle Scholar
  43. Lim, L. W., Mathews, F. S., and Steenkamp, D. J., 1988, Identification of ADP in the iron-sulfer flavoprotein trimethylamine dehydrogenase, J. Biol. Chem. 263:3075–3078.PubMedGoogle Scholar
  44. Lim, L. W., Shamala, N., Mathews, F. S., and Steenkamp, D. J., 1984, Molecular structure of trimethylamine dehydrogenase from the bacterium W3A1 at 6.0-resolution, J. Biol. Chem. 259:14458–14462.PubMedGoogle Scholar
  45. Lim, L. W., Shamala, N., Mathews, F. S., Steenkamp, D. J., Hamlin, R., and Xuong, N. H., 1986, Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4-resolution, J. Biol. Chem. 261:15140–15146.PubMedGoogle Scholar
  46. Loginova, N. V., and Trotsenko, Y. A., 1978, Carbon metabolism in methylotrophic bacteria isolated from activated sludge, Mikrobiologiya 47:939–946.Google Scholar
  47. Mathews, F. S., Trickey, P., Barton, J. D., and Chen, Z.-W., 1996, Crystal structures of recombinant wild-type and a C30A mutant trimethylamine dehydrogenase from Methylophilus W3A1, in: Flavins and Flavoproteins (K. Stevenson, V. Massey, and C. H. Williams, eds.), University of Calgary Press, Calgary, pp. 873–876.Google Scholar
  48. Meiberg, J. B. M., and Harder, W., 1979, Dimethylamine dehydrogenase from Hyphomicrobium X: purification and properties of a new enzyme that oxidizes secondary amines, J. Gen. Microbiol. 115:49–58.CrossRefGoogle Scholar
  49. Mewies, M., Basran, J., Packman, L. C., Hille, R., and Scrutton, N. S., 1997, Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8α-methyl and C6-linked covalent flavoproteins, Biochemistry 36:7162–7168.CrossRefPubMedGoogle Scholar
  50. Mewies, M., McIntire, W. S., and Scrutton, N. S., 1998, Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs, Protein Science 7:7–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mewies, M., Packman, L. C., Mathews, F. S., and Scrutton, N. S., 1996, Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine, Biochem. J. 317:267–272.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nagy, J., Kenney, W. C., and Singer, T. P., 1979, The reaction of phenylhydrazine with trimethylamine dehydrogenase and with free flavins, J. Biol. Chem. 254:2684–2688.PubMedGoogle Scholar
  53. Pace, C. P., and Stankovich, M. T., 1991, Oxidation-reduction properties of trimethylamine dehydrogenase: effect of inhibitor binding, Arch. Biochem. Biophys. 287:97–104.CrossRefPubMedGoogle Scholar
  54. Packman, L. C., Mewies, M., and Scrutton, N. S., 1995, The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry, J. Biol. Chem. 270:13186–13191.CrossRefPubMedGoogle Scholar
  55. Porter, D. J. T., Voet, J. G., and Bright, H. J., 1977, Mechanistic features of the D-amino acid oxidase reaction studied by double stopped flow spectrophotometry, J. Biol. Chem. 252:4464–4473.PubMedGoogle Scholar
  56. Raine, A. R., Scrutton, N. S., and Mathews, F. S., 1994, On the evolution of alternate core packing in eightfold beta/alpha-barrels, Protein Sci 3:1889–1892.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Raine, A. R., Yang, C. C., Packman, L. C., White, S. A., Mathews, F. S., and Scrutton, N. S., 1995, Protein recognition of ammonium cations using side-chain aromatics: a structural variation for secondary ammonium ligands, Protein Sci 4:2625–2628.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Regan, J. J., 1993, PATHWAYS II, San DiegoGoogle Scholar
  59. Roberts, P., Basran, J., Wilson, E. K., Hille, R., and Scrutton, N. S., 1999, Redox cycles in trimethylamine dehydrogenase and mechanism of substrate inhibition, Biochemistry 38:14927–14940.CrossRefPubMedGoogle Scholar
  60. Roberts, D. L., Frerman, F. E., and Kim, J.-J. P., 1996, Three-dimensional structure of human electron transfer flavoprotein to 2.1 resolution, Proc. Natl. Acad. Sci. USA 93:14355–14360.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rohlfs, R. J., and Hille, R., 1991, Intramolecular electron transfer in trimethylamine dehydrogenase from bacterium W3A1, J. Biol. Chem. 266:15244–15252.PubMedGoogle Scholar
  62. Rohlfs, R. J., and Hille, R., 1994, The reaction of trimethylamine dehydrogenase with diethyl-methylamine, J. Biol. Chem. 269:30869–30879.PubMedGoogle Scholar
  63. Rohlfs, R. J., Huang, L., and Hille, R., 1995, Prototropic control of intramolecular electron transfer in trimethylamine dehydrogenase, J. Biol. Chem. 270:22196–22207.CrossRefPubMedGoogle Scholar
  64. Scrutton, N. S., 1994, α/β barrel evolution and the modular assembly of enzymes: emerging trends in the flavin dehydrogenase/oxidase family, BioEssays 16:115–122.CrossRefPubMedGoogle Scholar
  65. Scrutton, N. S., Basran, J., and Sutcliffe, M. J., 1999, New insights into enzyme catalysis: ground state tunneling driven by protein dynamics, Eur. J. Biochem. 264:666–671.CrossRefPubMedGoogle Scholar
  66. Scrutton, N. S., Packman, L. C., Mathews, F. S., Rohlfs, R. J., and Hille, R., 1994, Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli, J. Biol. Chem. 269:13942–13950.PubMedGoogle Scholar
  67. Scrutton, N. S., and Raine, A. R. C., 1996, Cation-π bonding and amino aromatic interactions in the biomolecular recognition of substituted ammonium ligands, Biochem. J. 319:1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Silverman, R. B., 1995, Radical ideas about monoamine oxidase, Accts. Chem. Res. 28:335–342.CrossRefGoogle Scholar
  69. Stankovich, M. T., and Steenkamp, D. J., 1987, Redox properties of trimethylamine dehydrogenase, in: Flavins and Flavoproteins (D. E. Edmondson and D. B. McCormick, eds.), Walter de Gruyter, Berlin, pp. 687–690.Google Scholar
  70. Steenkamp, D. J., and Beinert, H., 1982a, Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 1. The influence of substrate binding to reduced trimethylamine dehydrogenase on the intramolecular electron transfer between its prosthetic groups, Biochem. J. 207:233–239.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Steenkamp, D. J., and Beinert, H., 1982b, Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase, Biochem. J. 207:241–252.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Steenkamp, D. J., Beinert, H., McIntire, W. S., and Singer, T. P., 1978a, in: Mechanisms of Oxidizing Enzymes (T. P. Singer and R. N. Ondarza, eds.), Elsevier North-Holland Inc, New York, pp. 127–141.Google Scholar
  73. Steenkamp, D. J., and Gallup, M., 1978, The natural flavorprotein electron acceptor of trimethylamine dehydrogenase, J. Biol. Chem. 253:4086–4089.PubMedGoogle Scholar
  74. Steenkamp, D. J., and Mallinson, J., 1976, Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics, Biochim. Biophys. Acta 429:705–719.CrossRefPubMedGoogle Scholar
  75. Steenkamp, D. J., and Mathews, F. S., 1992, The biochemical properties and structure of trimethylamine dehydrogenase, in: Chemistry and Biochemistry of Flavoenzymes, Volume II (F. Muller, ed.), CRC Press, Boca Raton, pp. 395–423.Google Scholar
  76. Steenkamp, D. J., McIntire, W., and Kenney, W. C., 1978b, Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin, J. Biol. Chem. 253:2818–2824.PubMedGoogle Scholar
  77. Steenkamp, D. J., and Singer, T. P, 1976, On the presence of a novel covalently bound oxidation-reduction cofactor, iron and labile sulfur in trimethylamine dehydrogenase, Biochem. Biophys. Res. Commun. 71:1289–1295.CrossRefPubMedGoogle Scholar
  78. Steenkamp, D. J., Singer, T. P., and Beinert, H., 1978c, Participation of the iron-sulphur cluster and of the covalently bound coenzyme of trimethylamine dehydrogenase in catalysis, Biochem. J. 169:361–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sutcliffe, M. J., and Scrutton, N. S., 2000, Enzymology takes a quantum leap forward, Phil. Trans. Roy. Soc. Ser. A. 358:367–386.CrossRefGoogle Scholar
  80. van Iersel, J., van der Meer, R. A., and Duine, J. A., 1986, Methylamine oxidase from Arthrobacter P1. A bacterial copper-quinoprotein amine oxidase, Eur. J. Biochem. 161:415–419.CrossRefPubMedGoogle Scholar
  81. Wallace, A. C., Laskowski, R. A., and Thornton, J. M., 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng. 8:127–134CrossRefPubMedGoogle Scholar
  82. White, S. A., Mathews, F. S., Rohlfs, R. J., and Hille, R., 1994, Crystallization and preliminary crystallographic investigation of electron-transfer flavoprotein from the bacterium Methylophilus W3A1, J. Mol. Biol. 240:265–266.CrossRefPubMedGoogle Scholar
  83. Williams, C. H. J., 1992, Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase and mercuric ion reductase family of flavoenzyme transhydrogenases, in: Chemistry and Biochemistry of Flavoenzymes, volume III (F. Muller, ed.), CRC Press, Boca Raton, pp. 121–211.Google Scholar
  84. Wilmanns, M., Hyde, C. C., Davies, D. R., Kirschener, K., and Jansonius, J. N., 1991, Structural conservation in parallel beta/alpha barrel enzymes that catalyse three sequential reactions in the pathway of tryptophan biosynthesis, Biochemistry 30:9161–9169.CrossRefPubMedGoogle Scholar
  85. Wilson, E. K., Huang, L., Sutcliffe, M. J., Mathews, F. S., Hille, R., and Scrutton, N. S., 1997a, An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes, Biochemistry 36:41–48.CrossRefPubMedGoogle Scholar
  86. Wilson, E. K., Scrutton, N. S., Colfen, H., Harding, S. E., Jacobsen, M. P., and Winzor, D. J., 1997b, An ultracentrifugal approach to quantitative characterization of the molecular assembly of a physiological electron-transfer complex: the interaction of electron-transferring flavoprotein with trimethylamine dehydrogenase, Eur. J. Biochem. 243:393–399.CrossRefPubMedGoogle Scholar
  87. Yang, C. C., Packman, L. C., and Scrutton, N. S., 1995, The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition, Eur. J. Biochem. 232:264–71.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Nigel S. Scrutton
    • 1
  • Michael J. Sutcliffe
    • 1
  1. 1.Departments of Biochemistry and ChemistryUniversity of LeicesterUK

Personalised recommendations