Review: Peptidases and Peptidase Inhibitors in the Pathogenesis of Diseases

Disturbances in the ubiquitin-mediated proteolytic system. Protease-Antiprotease imbalance in inflammatory reactions. Role of cathepsins in tumour progression
  • Ute Bank
  • Sabine Krüger
  • Jürgen Langner
  • Albert Roessner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 477)


With this review we wanted to present three aspects of proteinases in diseases, namely (i) the newly energing involvement of the ubiquitin mediated proteolysis system in a growing number of clinical manifestations; (ii) the importance of the fine tuning of the delicate balance of PMN proteases and their inhibitors in inflammatory diseases and (iii) the very special effects exerted by lysosomal cysteine proteinases on tumour metastasis and progression. In all three topics during the last few years have been published surprising new results leading to better understanding of the normal and pathologic functions influenced by proteolytic enzymes. It is easy to forecast the continuation of this process, and this makes one curious what might be the next steps of discovery in this field.


Cystic Fibrosis Transmembrane Conductance Regulator Neutrophil Elastase Angelman Syndrome Secretory Leukocyte Proteinase Inhibitor Human Neutrophil Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbink, J.J., Kamp, A.M., Nieuwenhuys, E.J., Nuijens, J.H., Swaak, A.J., and Hack, C.E., 1991, Predominant role of neutrophils in the inactivation of alpha 2-macroglobulin in arthritic joints. Arthritis Rheum. 34: 1139–1150.PubMedGoogle Scholar
  2. Allaire, E., Forough, R., Clowes, M., Starcher, B., and Clowes, A.W., 1998, Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J. Clin. Invest 102: 1413–1420.PubMedGoogle Scholar
  3. Alves-Rodrigues, A., Gregori, L., and Figueiredo-Pereira, M.E., 1998, Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21: 516–520.CrossRefPubMedGoogle Scholar
  4. Ashcroft, G.S., Herrick, S.E., Tarnuzzer, R.W., Horan, M.A., Schultz, G.S., and Ferguson, M.W., 1997, Human ageing impairs injury-induced in vivo expression of tissue inhibitor of matrix metalloproteinases (TIMP)-l and-2 proteins and mRNA. J. Pathol. 183: 169–176.PubMedGoogle Scholar
  5. Axelsson, L, Linder, C., Ohlsson, K., and Rosengren, M., 1988, The effect of the secretory leukocyte protease inhibitor on leukocyte proteases released during phagocytosis. Biol. Chem. Hoppe Seyler Suppl. 369: 89–93.Google Scholar
  6. Ballieux, B.E., Hiemstra, P.S., Klar-Mohamad, N., Hagen, E.C., van Es, L.A., van der Woude, F.J., and Daha, MR., 1994, Detachment and cytolysis of human endothelial cells by proteinase 3. Eur. J. Immunol. 24: 3211–3215.PubMedGoogle Scholar
  7. Bangalore, N., Travis, J., 1994, Comparison of properties of membrane bound versus soluble forms of human leukocytic elastase and cathepsin G. Biol. Chem. Hoppe Seyler 375: 659–666.PubMedGoogle Scholar
  8. Bank, U., Kupper, B., Reinhold, D., Hoffmann, T., and Ansorge, S., 1999, Evidence for a crucial role of neutrophil-derived serineproteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett. 461: 235–240.CrossRefPubMedGoogle Scholar
  9. Barrett, A.J., Rawlings, N.D., and Woessner, J.F., 1998, Handbook of proteolytic enzymes. Academic Press, San DiegoGoogle Scholar
  10. Baumeister, W., Cejka, Z., Kania, M., and Seemuller, E., 1997, The proteasome: a macromolecular assemblydesigned to confine proteolysis to a nanocompartment. Biol. Chem. 378: 121–130.PubMedGoogle Scholar
  11. Baumstark, J.S., 1970, Studies on the elastase-serum protein interaction. II. On the digestion of human a2-macroglobulin, an elastase inhibitor, by elastase. Biochim. Biophys. Acta 207: 318–330.PubMedGoogle Scholar
  12. Berling, R., Borgstrom, A., and Ohlsson, K., 1998, Peritoneallavage with aprotinin in patients with severe acute pancreatitis. Effects on plasma and peritoneal levels of trypsin and leukocyte proteases and their major inhibitors. Int. J. Pancreatol. 24: 9–17.PubMedGoogle Scholar
  13. Berquin, I.M., Sloane, B.F., 1994, Cysteineprotease and tumor progression. Perspect. Drug Discov. 2: 371–388.Google Scholar
  14. Bieth, J.G., 1998, Leukocyte elastase. In Handbook of proteolytic enzymes. (A.J. Barrett, N.D. Rawlings and J.F. Woessner, eds). Academic Press, San Diego, pp. 54–60.Google Scholar
  15. Bird, P.I., 1999, Regulation of pro-apoptotic leucocyte granule serine proteinases by intracellular serpins. Immunol. Cell Biol. 77: 47–57.CrossRefPubMedGoogle Scholar
  16. Birrer, P., 1993, Consequences of unbalanced protease in the lung: protease involvement in destruction and local defense mechanisms of the lung. Agents Actions Suppl. 40: 3–12.PubMedGoogle Scholar
  17. Blank, C.A., Brantly, ML, 1994, Clinicalfeatures and molecular characteristics of alpha 1-antitrypsin deficiency. Ann. Allergy 72: 105–120.PubMedGoogle Scholar
  18. Blavier, L, Henriet, P., Imren, S., and Declerck, Y.A., 1999, Tissue inhibitors of matrix metalloproteinases in cancer. Ann. N. Y. Acad. Sci. 878: 108–119.CrossRefPubMedGoogle Scholar
  19. Bopst, M., Haas, C., Car, B., and Eugster, H.P., 1998, The combined inactivation of tumor necrosis factor and interleukin-6 prevents induction of the major acute phase proteins by endotoxm. Eur. J. Immunol. 28: 4130–4137.CrossRefPubMedGoogle Scholar
  20. Boutten, A., Venembre, P., Seta, N., Hamelin, J., Aubier, M., Durand, G., and Dehoux, M.S., 1998, Oncostatin M is a potent stimulator of alpha 1-antitrypsin secretion in lung epithelial cells: modulation by transforming growth factor-beta and interferon-gamma. Am. J. Respir. Cell Mol. Biol. 18: 511–520.PubMedGoogle Scholar
  21. Brandt, E., Van Damme, J., and Flad, H.D., 1991, Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derivedconnective tissue-activating peptide III. Cytokine 3: 311–321.CrossRefPubMedGoogle Scholar
  22. Brodsky, J.L., McCracken, A.A., 1997, ER-associated and proteasome-mediated protein degradation: How two topologically restricted events came together. Trends cell Biol. 7: 151–156.Google Scholar
  23. Capodici, C., Muthukumaran, G., Amoruso, M.A., and Berg, R.A., 1989, Activation of neutrophil collagenase by cathepsin G. Inflammation 13: 245–258.PubMedGoogle Scholar
  24. Car, B.D., Baggiolini, M., and Walz, A., 1991, Formation of neutrophil-activating peptide 2 from platelet-derived connective-tissue-activating peptide III by different tissue proteinases. Biochem. J. 275: 581–584.PubMedGoogle Scholar
  25. Carlson, J.A., Rogers, B.B., Sifers, R.N., Hawkins, H.K., Finegold, M.J., and Woo, S.L., 1988, Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J. Clin. Invest 82: 26–36.PubMedGoogle Scholar
  26. Catanese, J., Kress, L.F., 1984, Enzymatic inactivation of human plasma C1-inhibitor and alpha 1-antichymotrypsin by Pseudomonas aeruginosa proteinase and elastase. Biochim. Biophys. Acta 789: 37–43PubMedGoogle Scholar
  27. Cepinskas, G., Sandig, M., and Kvietys, P.R., 1999, PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front. J. Cell Sci. 112: 1937–1945.PubMedGoogle Scholar
  28. Champagne, B., Tremblay, P., Cantin, A., and St.Pierre, Y., 1998, Proteolytic cleavage of ICAM-l by human neutrophil elastase. J. Immunol. 161: 6398–6405.PubMedGoogle Scholar
  29. Chen, Z.J., Maniatis, T., 1998, Role of the ubiquitin-proteasome pathway in NFkB activation. In Ubiquitin and the biology of the cell. (J.M. Peters, J.R. Harris and D. Finley, eds). Plenum Press, London/New York, pp. 303–322.Google Scholar
  30. Cichy, J., Potempa, J., Chawla, R.K., and Travis, J., 1995, Stimulatory effect of inflammatory cytokines on alpha 1-antichymotrypsin expression in human lung-derived epithelial cells. J. Clin. Invest 95: 2729–2733.PubMedGoogle Scholar
  31. Ciechanover, A., Schwartz, A.L., 1994, The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 8: 182–191.PubMedGoogle Scholar
  32. Coeshott, C., Ohnemus, C., Pilyavskaya, A., Ross, S., Wieczorek, M., Kroona, H., Leimer, A.H., and Cheronis, J., 1999, Converting enzyme-independentrelease of tumor necrosis factor alpha and IL-l beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc. Natl. Acad. Sci. USA 96: 6261–6266.CrossRefPubMedGoogle Scholar
  33. Courtney, M., Jallat, S., Tessier, L.H., Benavente, A., Crystal, R.G., and Lecocq, J.P., 1985, Synthesis in E. coli of alpha 1-antitrypsin variants of therapeutic potential for emphysema and thrombosis. Nature 313: 149–151.CrossRefPubMedGoogle Scholar
  34. Coux, O., Tanaka, K., and Goldberg, A.L., 1996, Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65: 801–847.CrossRefPubMedGoogle Scholar
  35. Csernok, E., Szymkowiak, C.H., Mistry, N., Daha, M.R., Gross, W.L., and Kekow, J., 1996, Transforminggrowth factor-beta (TGF-beta) expression and interaction with proteinase 3 (PR3) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin. Exp. Immunol. 105: 104–111.CrossRefPubMedGoogle Scholar
  36. de Bri, E., Lei, W., Svensson, O., Chowdhury, M., Moak, S.A., and Greenwald, R.A., 1998, Effect of an inhibitor of matrix metalloproteinases on spontaneous osteoarthritis in guinea pigs. Adv. Dent. Res. 12: 82–85.PubMedGoogle Scholar
  37. Denison, F.C., Kelly, R.W., Calder, A.A., and Riley, S.C., 1999, Secretory leukocyte protease inhibitor concentration increases in amnioticfluid with the onset of labour in women: characterization of sites of release within the uterus. J. Endocrinol. 161: 299–306.CrossRefPubMedGoogle Scholar
  38. Desrochers, P.E., Mookhtiar, K., Van Wart, H.E., Hasty, K.A., and Weiss, S.J., 1992, Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol Chem. 267: 5005–5012.PubMedGoogle Scholar
  39. Dirksen, A., Dijkman, J.H., Madsen, F., Stoel, B., Hutchison, D.C., Ulrik, C.S., Skovgaard, L.T., Kok-Jensen, A., Rudolphus, A., Seersholm, N., Vrooman, H.A., Reiber, J.H., Hansen, N.C., Heckscher, T., Viskum, K., and Stolk, J., 1999, A RandomizedClinical Trial of alpha(l)-Antitrypsin Augmentation Therapy. Am. J. Respir. Crit Care Med. 160: 1468–1472.PubMedGoogle Scholar
  40. Doring, G., 1994, The role of neutrophil elastase in chronic inflammation. Am.J.Respir.Crit Care Med. 150: S114–S117.PubMedGoogle Scholar
  41. Doring, G., Frank, F., Boudier, C., Herbert, S., Fleischer, B., and Bellon, G., 1995, Cleavage of lymphocyte surface antigensCD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J. Immunol. 154: 4842–4850.PubMedGoogle Scholar
  42. Draper, D., Donohoe, W., Mortimer, L., and Heine, R.P., 1998, Cysteine proteases of Trichomonas vaginalis degrade secretory leukocyte protease inhibitor. J. Infect. Dis. 178: 815–819.PubMedGoogle Scholar
  43. Drummond, A.H., Beckett, P., Brown, P.D., Bone, E.A., Davidson, A.H., Galloway, W.A., Gearing, A.J., Huxley, P., Laber, D., McCourt, M., Whittaker, M., Wood, L.M., and Wright, A., 1999, Preclinical and clinical studies of MMP inhibitors in cancer. Ann. N. Y. Acad. Sci. 878: 228–235.CrossRefPubMedGoogle Scholar
  44. Eckman, E.A., Mallender, W.D., Szegletes, T., Silski, C.L., Schreiber, J.R., Davis, P.B., and Ferkol, T.W., 1999, In vitro transport of active alpha(1)-antitrypsin to the apical surface of epithelia by targeting the polymeric immunoglobulin receptor. Am. J. Respir. Cell Mol. Biol. 21: 246–252.PubMedGoogle Scholar
  45. Edwards, J.V., Bopp, A.F., Batiste, S., Ullah, A.J., Cohen, I.K., Diegelmann, R.F., and Montante, S.J., 1999, Inhibition of elastase by a synthetic cotton-bound serine protease inhibitor: in vitro kinetics and inhibitor release. Wound. Repair Regen. 7: 106–118.CrossRefPubMedGoogle Scholar
  46. Edwards, S.W., Hallett, M.B., 1997, Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol. Today 18: 320–324.CrossRefPubMedGoogle Scholar
  47. Ehring, B., Meyer, T.H., Eckerskom, C., Lottspeich, F., and Tampe, R., 1996, Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes. Cleavage of proteins and antigenic peptides. Eur. J. Biochem. 235: 404–415.CrossRefPubMedGoogle Scholar
  48. Elliott, E., Sloane, B.F., 1996, The cysteine protease cathepsin B in cancer. Perspect. Drug Discov. 6: 12–32.Google Scholar
  49. Esnault, V.L., Audrain, MA., and Sesboue, R., 1997, Alpha-1-antitrypsin phenotyping in ANCA-associated diseases: one of several arguments for protease/antiprotease imbalance in systemic vasculitis. Exp. Clin. Immunogenet. 14: 206–213.PubMedGoogle Scholar
  50. Fantuzzi, G., 1998, Lecture at the: Second Joint Meeting of the International Society foe Interferon and Cytokine Research and the International Cytokine Society, Jerusalem.Google Scholar
  51. Ferry, G., Lonchampt, M., Pennel, L., de Nanteuil, G., Canet, E., and Tucker, G.C., 1997, Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett. 402: 111–115.CrossRefPubMedGoogle Scholar
  52. Foekens, J.A., Kos, J., Peters, H.A., Krasovec, M., Look, M.P., Cimerman, N., Meijer-van Gelder, ME., Henzen-Logmans, S.C., van Putten, W.L., and Klijn, J.G., 1998, Prognostic significance of cathepsins B and L in primary human breast cancer. J. Clin. Oncol. 16: 1013–1021.PubMedGoogle Scholar
  53. Frears, E.R., Zhang, Z., Blake, D.R., O’Connell, J.P., and Winyard, P.G., 1996, Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett. 381: 21–24.CrossRefPubMedGoogle Scholar
  54. Friedrich, B., Jung, K., Lein, M., Turk, I., Rudolph, B., Hampel, G., Schnorr, D., and Loaning, S.A., 1999, Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur. J. Cancer 35: 138–144.CrossRefPubMedGoogle Scholar
  55. Frosch, B.A., Berquin, I., Emmert-Buck, M.R., Moin, K., and Sloane, B.F., 1999, Molecular regulation, membrane association and secretion of tumor cathepsin B. APMIS 107: 28–37.PubMedGoogle Scholar
  56. Gillis, S., Furie, B.C., and Furie, B., 1997, Interactions of neutrophils and coagulation proteins. Semin. Hematol. 34: 336–342.PubMedGoogle Scholar
  57. Gillissen, A., Birrer, P., McElvaney, N.G., Buhl, R., Vogelmeier, C., Hoyt R.F., Jr., Hubbard, R.C., and Crystal, R.G., 1993, Recombinant secretory leukoprotease inhibitor augments glutathione levels in lung epithelial lining fluid. J. Appl. Physiol 75: 825–832.PubMedGoogle Scholar
  58. Goldberg, A.L., Rock, K.L., 1992, Proteolysis, proteasomes and antigen presentation. Nature 357: 375–379.CrossRefPubMedGoogle Scholar
  59. Gomez, D.E., Alonso, D.F., Yoshiji, H., and Thorgeirsson, U.P., 1997, Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 74: 111–122.PubMedGoogle Scholar
  60. Greenwald, R.A., 1999, Thirty-six years in the clinic without an MMP inhibitor. What hath collagenase wrought? Ann. N. Y. Acad. Sci. 878: 413–419.PubMedGoogle Scholar
  61. Hasselgren, P.O., Fischer, J.E., 1997, The ubiquitin-proteasome pathway: review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions. Ann. Surg. 225: 307–316.CrossRefPubMedGoogle Scholar
  62. Hawkins, D., Cochrane, C.G., 1968, Glomerular basement membrane damage in immunological glomerulonephritis. Immunology 14: 665–681.PubMedGoogle Scholar
  63. Heinzelmann, M., Mercer-Jones, M.A., and Passmore, J.C., 1999, Neutrophils and renal failure. Am. J. Kidney Dis. 34: 384–399.PubMedGoogle Scholar
  64. Henson, P.M., Henson, J.E., Fittschen, C., Bratton, D., and Riches, D.W.H., 1992, Degranulation and secretion by phagocytic cells. In Inflammation: Basic principles and clinical correlates. (J.I. Gallin, I.M. Goldstein and R. Snyderman, eds). Raven Press, New York, pp. 511–540.Google Scholar
  65. Hicke, L., 1997, Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J. 11: 1215–1226.PubMedGoogle Scholar
  66. Hochstrasser, M., Kornitzer, D., 1998, Ubiquitin degradation of transcription regulators. In Ubiquitin and the biology of the cell. (J.M. Peters, J.R. Harris and D. Finley, eds). Plenum Press, London/New York, pp. 279–302Google Scholar
  67. Hoidal, J.R., 1998, Myeloblastin. In Handbook of proteolytic enzymes. (A.J. Barrett, N.D. Rawlings and J.F. Woessner, eds). Academic Press, San Diego, pp. 62–65.Google Scholar
  68. Horbach, D.A., van Oort, E., Lisman, T., Meijers, J.C., Derksen, R.H., and de Groot, P.G., 1999, Beta2-glycoprotein I is proteolytically cleaved in vivo upon activation of fibrinolysis. Thromb. Haemost. 81: 87–95.PubMedGoogle Scholar
  69. Huibregtse, J.M., et al., 1998, Ubiquitination of the p53 tumor suppressor. In Ubiquitin and the biology of the cell. (J.M. Peters, J.R. Harris and D. Finley, eds). Plenum Press, London/New York, pp. 323–543.Google Scholar
  70. Itoh, Y., Nagase, PL, 1995, Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J. Biol. Chem. 270: 16518–16521.PubMedGoogle Scholar
  71. Janoff, A., Feinstein, G., Malemud, C.J., and Elias, J.M., 1976, Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases—a model of joint injury. I. Penetration of enzyme into rabbit articular cartilage and release of 35SO4-labeled material from the tissue. J. Clin. Invest 57: 615–624.PubMedGoogle Scholar
  72. Jentsch, S., 1992, Ubiquitin-dependent protein degradation: a cellular perspective. Trends cell Biol 2: 98–103.CrossRefPubMedGoogle Scholar
  73. Jin, F.Y., Nathan, C., Radzioch, D., and Ding, A., 1997, Secretory leukocyteprotease inhibitor: amacrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88: 417–426.CrossRefPubMedGoogle Scholar
  74. Jochum, M., Billing, A.G., Frohlich, D., Schildberg, F.W., MacHleidt, W., Cheronis, J.C., Gippner-Steppert, C., and Fritz, H., 1999, Proteolytic destruction of functional proteins by phagocytes in human peritonitis. Eur. J. Clin. Invest 29: 246–255.CrossRefPubMedGoogle Scholar
  75. Johnson, D., Travis, J., 1979, The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J. Biol. Chem. 254: 4022–4026.PubMedGoogle Scholar
  76. Jones, L., Ghaneh, P., Humphreys, M., and Neoptolemos, J.P., 1999, The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer. Ann. N. Y. Acad. Sci. 880: 288–307.CrossRefPubMedGoogle Scholar
  77. Kahari, V.M., Saarialho-Kere, U., 1999, Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann. Med. 31: 34–45.PubMedGoogle Scholar
  78. Kawabata, K., Moore, A.R., and Willoughby, D.A., 1996, Impaired activity of protease inhibitors towards neutrophil elastase bound to human articular cartilage. Ann. Rheum. Dis. 55: 248–252.PubMedGoogle Scholar
  79. Keppler, D., Waridel, P., Abrahamson, M., Bachmann, D., Berdoz, J., and Sordat, B., 1994, Latency of cathepsin B secreted by human colon carcinoma cells is not linked to secretion of cystatin C and is relieved by neutrophil elastase. Biochim. Biophys. Acta 1226: 117–125.PubMedGoogle Scholar
  80. King, R.W., Deshaies, R.J., Peters, J.M., and Kirschner, M.W., 1996, How proteolysis drives the cell cycle. Science 274: 1652–1659.CrossRefPubMedGoogle Scholar
  81. Kishino, T., Lalande, M., and Wagstaff, J., 1997, UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15: 70–73.CrossRefPubMedGoogle Scholar
  82. Kleiner, D.E., Stetler-Stevenson, W.G., 1999, Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. Suppl. 43: S42–S51.CrossRefPubMedGoogle Scholar
  83. Kobayashi, H., Schmitt, M, Goretzki, L., Chucholowski, N., Calvete, J., Kramer, M, Gunzler, W.A., Janicke, F., and Graeff, H., 1991, Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J. Biol. Chem. 266: 5147–5152.PubMedGoogle Scholar
  84. Kobayashi, H., Ohi, H., Sugimura, M., Shinohara, H., Fujii, T., and Terao, T., 1992, Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res. 52: 3610–3614.PubMedGoogle Scholar
  85. Kobayashi, H., Moniwa, N., Sugimura, M., Shinohara, H., Ohi, H., and Terao, T., 1993, Effects of membrane-associated cathepsin B on the activation of receptor-bound prourokinase and subsequent invasion of reconstituted basement membranes. Biochim. Biophys. Acta 1178: 55–62.PubMedGoogle Scholar
  86. Kolkhorst, V., Sturzebecher, J., and Wiederanders, B., 1998, Inhibition of tumour cell invasion by protease inhibitors: correlation with the protease profile. J.Cancer Res. Clin. Oncol. 124: 598–606.CrossRefPubMedGoogle Scholar
  87. Kos, J., Stabuc, B., Schweiger, A., Krasovec, M., Cimerman, N., Kopitar-Jerala, N., and Vrhovec, I., 1997, Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin. Cancer Res. 3: 1815–1822.PubMedGoogle Scholar
  88. Kostoulas, G., Lang, A., Nagase, H., and Baici, A., 1999, Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 455: 286–290.CrossRefPubMedGoogle Scholar
  89. Krepela, E., Prochazka, J., Karova, B., Cermak, J., and Roubkova, H., 1998, Cysteine proteases and cysteine protease inhibitors in non-small cell lung cancer. Neoplasma 45: 318–331.PubMedGoogle Scholar
  90. Krüger, S., et al., 1999, Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Res. 59: 6010–6014.Google Scholar
  91. Kumagai, K., Ohno, I., Okada, S., Ohkawara, Y., Suzuki, K., Shinya, T., Nagase, H., Iwata, K., and Shirato, K., 1999, Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162: 4212–4219.PubMedGoogle Scholar
  92. Le Barillec, K., Si-Tahar, M., Balloy, V., and Chignard, M., 1999, Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. J. Clin. Invest 103: 1039–1046.Google Scholar
  93. Leavell, K.J., Peterson, M.W., and Gross, T.J., 1997, Human neutrophil elastase abolishes interleukin-8 chemotactic activity. J. Leukoc. Biol. 61: 361–366.PubMedGoogle Scholar
  94. Loda, M., Cukor, B., Tam, S.W., Lavin, P., Fiorentino, M., Draetta, G.F., Jessup, J.M., and Pagano, M., 1997, Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med. 3: 231–234.CrossRefPubMedGoogle Scholar
  95. Lomas, D.A., Carrell, R.W., 1993, A protein structural approach to the solution of biological problems: alpha 1-antitrypsin as a recent example. Am. J. Physiol 265: L211–L219.PubMedGoogle Scholar
  96. Machovich, R., Owen, W.G., 1990, The elastase-mediated pathway of fibrinolysis. Blood Coagul. Fibrinolysis 1: 79–90.PubMedGoogle Scholar
  97. Matsuura, T., Sutcliffe, J.S., Fang, P., Galjaard, R.J., Jiang, Y.H., Benton, C.S., Rommens, J.M., and Beaudet, A.L., 1997, De novo truncating mutations in E6-AP ubiquitin-protein ligase gene(UBE3A) in Angelman syndrome. Nat. Genet. 15: 74–77.CrossRefPubMedGoogle Scholar
  98. McNeely, T.B., Shugars, D.C., Rosendahl, M., Tucker, C., Eisenberg, S.P., and Wahl, S.M., 1997, Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90: 1141–1149.PubMedGoogle Scholar
  99. Mignatti, P., Rifkin, D.B., 1993, Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 73: 161–195.PubMedGoogle Scholar
  100. Mitch, W.E., Goldberg, A.L., 1996, Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N. Engl. J. Med. 335: 1897–1905.CrossRefPubMedGoogle Scholar
  101. Mitsuhashi, H., Asano, S., Nonaka, T., Masuda, K., and Kiyoki, M., 1997, Potency of truncated secretory leukoprotease inhibitor assessed in acute lung injury models in hamsters. J. Pharmacol. Exp. Ther. 282: 1005–1010.PubMedGoogle Scholar
  102. Miyazawa, K., Toyama, K., Gotoh, A., Hendrie, P.C., Mantel, C., and Broxmeyer, H.E., 1994, Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood 83: 137–145.PubMedGoogle Scholar
  103. Molhuizen, H.O., Schalkwijk, J., 1995, Structural, biochemical, and cell biological aspects of the serine proteinase inhibitor SKALP/elafin/ESl. Biol. Chem. Hoppe Seyler 376: 1–7.PubMedGoogle Scholar
  104. Moore, A.R., Appelboam, A., Kawabata, K., Da Silva, J.A., D’Cruz, D., Gowland, G., and Willoughby, D.A., 1999, Destruction of articular cartilage by alpha 2 macroglobulin elastase complexes: role in rheumatoid arthritis. Ann. Rheum. Dis. 58: 109–113.PubMedGoogle Scholar
  105. Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M.J., and Rouis, M., 1999, Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation 99: 420–426.PubMedGoogle Scholar
  106. Mori, S., Claesson-Welsh, L., Okuyama, Y., and Saito, Y., 1995, Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem. Biophys. Res. Commun. 213: 32–39.CrossRefPubMedGoogle Scholar
  107. Mueller, S.G., Paterson, A.J., and Kudlow, J.E., 1990, Transforming growth factor alpha in arterioles: cell surface processing of its precursor by elastases. Mol Cell Biol. 10: 4596–4602.PubMedGoogle Scholar
  108. Murnane, M.J., Sheahan, K., Ozdemirli, M., and Shuja, S., 1991, Stage-specific increases in cathepsin B messenger RNA content in human colorectal carcinoma. Cancer Res. 51: 1137–1142.PubMedGoogle Scholar
  109. Nelson, D., Potempa, J., Kordula, T., and Travis, J., 1999, Purification and characterization of a novel cysteine proteinase (periodontain) from Porphyromonas gingivalis. Evidence for a role in the inactivation of human alpha 1-proteinase inhibitor. J. Biol. Chem. 274: 12245–12251.CrossRefPubMedGoogle Scholar
  110. Norman, M.R., Mowat, A.P., and Hutchison, D.C., 1997, Molecular basis, clinical consequences and diagnosis of alpha-1 antitrypsin deficiency. Ann. Clin. Biochem. 34: 230–246.PubMedGoogle Scholar
  111. Nortier, J., Vandenabeele, P., Noel, E., Bosseloir, Y., Goldman, M., and Deschodt-Lanckman, M., 1991, Enzymatic degradation of tumor necrosis factor by activated human neutrophils: role of elastase. Life Sci. 49: 1879–1886.CrossRefPubMedGoogle Scholar
  112. Oh, C.E., McMahon, R., Benzer, S., and Tanouye, M.A., 1994, bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog. J. Neurosci. 14: 3166–3179.PubMedGoogle Scholar
  113. Ohlsson, S., Tufvesson, B., Polling, A., and Ohlsson, K., 1997, Distribution of the secretory leucocyte proteinase inhibitor in human articular cartilage Biol. Chem. 378: 1055–1058.PubMedGoogle Scholar
  114. Owen, C.A., Campbell, M.A., Sannes, P.L., Boukedes, S.S., and Campbell, E.J., 1995, Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J.Cell Biol. 131: 775–789.CrossRefPubMedGoogle Scholar
  115. Padrines, M., Wolf, M., Walz, A., and Baggiolini, M., 1994, Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett. 352: 231–235.CrossRefPubMedGoogle Scholar
  116. Parsons, S.L., Watson, S.A., Brown, P.D., Collins, H.M., and Steele, R.J., 1997, Matrix metalloproteinases. Br. J. Surg. 84: 160–166.CrossRefPubMedGoogle Scholar
  117. Perry, W.L., Hustad, C.M., Swing, D.A., O’Sullivan, T.N., Jenkins, N.A., and Copeland, N.G., 1998, The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat. Genet. 18: 143–146.CrossRefPubMedGoogle Scholar
  118. Peters, J.M., Hams, J.R., Finley, D., (eds.), 1998, Ubiquitin and the biology of the cell. Plenum Press. London/New York.Google Scholar
  119. Pillinger, M.H., Abramson, S.B., 1995, The neutrophil in rheumatoid arthritis. Rheum. Dis. Clin. North Am. 21: 691–714.PubMedGoogle Scholar
  120. Polette, M, Birembaut, P., 1998, Membrane-type metalloproteinases in tumor invasion. Int. J. Biochem. Cell Biol. 30: 1195–1202.CrossRefPubMedGoogle Scholar
  121. Porteu, F., Brockhaus, M., Wallach, D., Engelmann, H., and Nathan, C.F., 1991, Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa tumor necrosis factor (TNF) receptor. Comparison with the proteolytic activity responsible for shedding of TNF receptors from stimulated neutrophils. J. Biol. Chem. 266: 18846–18853.PubMedGoogle Scholar
  122. Prence, E.M., Dong, J.M., and Sahagian, G.G., 1990, Modulation of the transport of a lysosomal enzyme by PDGF. J. Cell Biol. 110: 319–326.CrossRefPubMedGoogle Scholar
  123. Rao, N.V., Marshall, B.C., Gray, B.H., and Hoidal, J.R., 1993, Interaction of secretory leukocyte protease inhibitor with proteinase-3. Am. J. Respir. Cell Mol. Biol. 8: 612–616.PubMedGoogle Scholar
  124. Rasmussen, H.S., McCann, P.P., 1997, Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol. Ther. 75: 69–75.CrossRefPubMedGoogle Scholar
  125. Remold-O’Donnell, E., Parent, D., 1995, Specific sensitivity of CD43 to neutrophil elastase. Blood 86: 2395–2402.PubMedGoogle Scholar
  126. Rifkin, D.B., Mazzieri, R., Munger, J.S., Noguera, I., and Sung, J., 1999, Proteolytic control of growth factor availability. APMIS 107: 80–85.PubMedGoogle Scholar
  127. Robache-Gallea, S., Morand, V., Bruneau, J.M., School, B., Tagat, E., Realo, E., Chouaib, S., and Roman-Roman, S., 1995, In vitro processing of human tumor necrosis factor-alpha. J. Biol. Chem. 270: 23688–23692.PubMedGoogle Scholar
  128. Rock, K.L., Gramm, C., Rothstein, L, Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L., 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771.CrossRefPubMedGoogle Scholar
  129. Rozhin, J., Sameni, M., Ziegler, G., and Sloane, B.F., 1994, Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res. 54: 6517–6525.PubMedGoogle Scholar
  130. Sallenave, J.M., Si-Tah, M., Cox, G., Chignard, M., and Gauldie, J., 1997, Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. J. Leukoc. Biol. 61: 695–702.PubMedGoogle Scholar
  131. Salvesen, G.S., 1998, Cathepsin G. In Handbook of proteolytic enzymes. (A.J. Barrett, N.D. Rawlings and J.F. Woessner, eds). Academic Press, San Diego, pp. 60–62.Google Scholar
  132. Samis, J.A., Kam, E., Nesheim, M.E., and Giles, A.R., 1998, Neutrophil elastase cleavage of human factor IX generates an activated factor IX-like product devoid of coagulant function. Blood 92: 1287–1296.PubMedGoogle Scholar
  133. Schaffner, M., Smith, S., and Jentsch, S., 1999, The ubiquitin-conjugatin system. In Ubiquitin and the biology of the cell. London, New York: Plenum Press, pp. 65–98.Google Scholar
  134. Scott, F.L., Hirst, C.E., Sun, J., Bird, C.H., Bottomley, S.P., and Bird, P.I., 1999, The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granuleprotease, cathepsin G. Blood 93: 2089–2097.PubMedGoogle Scholar
  135. Scuderi, P., Nez, P.A., Duerr, M.L., Wong, B.J., and Valdez, C.M., 1991, Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol. 135: 299–313.CrossRefPubMedGoogle Scholar
  136. Sexton, P.S., Cox, J.L., 1997, Inhibition of motility and invasion of B16 melanoma by the overexpression of cystatin C. Melanoma Res. 7: 97–101.Google Scholar
  137. Shabani, F., McNeil, J., and Tippett, L., 1998, The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCI) is suppressed by anti-rheumatic drugs. Free Radic. Res. 28: 115–123.PubMedGoogle Scholar
  138. Sheaff, R.J., Roberts, J.M., 1996, End of the line: proteolytic degradation of cyclin-dependent kinase inhibitors Chem. Biol. 3: 869–873.CrossRefPubMedGoogle Scholar
  139. Shinguh, Y., Yamazaki, A., Inamura, N., Fujie, K., Okamoto, M., Nakahara, K., Notsu, Y., Okuhara, M., and Ono, T., 1998, Biochemical and pharmacological characterization of FR134043, a novel elastase inhibitor. Eur. J. Pharmacol. 345: 299–308.CrossRefPubMedGoogle Scholar
  140. Simpson, A.J., Maxwell, A.I., Govan, J.R., Haslett, C., and Sallenave, J.M., 1999, Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 452: 309–313.CrossRefPubMedGoogle Scholar
  141. Sires, U.I., Murphy, G., Baragi, V.M, Fliszar, C.J., Welgus, H.G, and Senior, R.M., 1994, Matrilysin is much more efficient than other matrix metalloproteinases in the proteolytic inactivation of alpha 1-antitrypsin. Biochem. Biophys. Res. Commun. 204: 613–620.CrossRefPubMedGoogle Scholar
  142. Sloane, B.F., Moin, K., Sameni, M., Tait, L.R., Rozhin, J., and Ziegler, G., 1994, Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J. Cell Sci. 107: 373–384.PubMedGoogle Scholar
  143. Sommer, T., Wolf, D.H., 1997, Endoplasmic reticulum degradation:reverse protein flow of no return. FASEB J. 11: 1227–1233.PubMedGoogle Scholar
  144. Song, X., Zeng, L., Jin, W., Thompson, J., Mizel, D.E., Lei, K., Billinghurst, R.C., Poole, A.R., and Wahl, S.M., 1999, Secretory leukocyte protease inhibitor suppresses the inflammation and joint damage of bacterial cell wall-induced arthritis. J. Exp. Med. 190: 535–542.CrossRefPubMedGoogle Scholar
  145. Steadman, R., St John, P.L., Evans, R.A., Thomas, G.J., Davies, M., Heck, L.W., and Abrahamson, D.R., 1997, Human neutrophils do not degrade major basement membrane components during chemotactic migration. Int. J. Biochem. Cell Biol. 29: 993–1004.CrossRefPubMedGoogle Scholar
  146. Stiskal, J.A., O’Brien, K.K., Kelly, E.N., and Dunn, M.S., 1999, Reducing neutrophil elastase-induced lung injury. Can. Respir.J. 6: 138–140.PubMedGoogle Scholar
  147. Stolk, J., Camps, J., Feitsma, H.I., Hermans, J., Dijkman, J.H., and Pauwels, E.K., 1995, Pulmonary deposition and disappearance of aerosolised secretory leucocyte protease inhibitor. Thorax 50: 645–650.PubMedGoogle Scholar
  148. Stracke, M., Liotta, L., 1995, Molecular mechanisms of tumor cell metastasis. In The molecular basis of cancer. Sanders, Philadelphia, pp. 233–247.Google Scholar
  149. Stricklin, G.P., Hoidal, J.R., 1992, Oxidant-mediated inactivation of TIMP. Matrix Suppl. 1: 325.PubMedGoogle Scholar
  150. Taekema-Roelvink, M.E., van Kooten, C., Janssens, M.C., Heemskerk, E., and Daha, M.R., 1998, Effect of anti-neutrophil cytoplasmic antibodies on proteinase 3-induced apoptosis of human endothelial cells. Scand. J. Immunol. 48: 37–43.CrossRefPubMedGoogle Scholar
  151. Thomssen, C., Oppelt, P., Janicke, F., Ulm, K., Harbeck, N., Hofler, H., Kuhn, W., Graeff, H., and Schmitt, M., 1998, Identification of low-risk node-negative breast cancer patients by tumor biological factors PAI-1 and cathepsin L. Anticancer Res. 18: 2173–2180.PubMedGoogle Scholar
  152. Tomee, J.F., Koeter, G.H., Hiemstra, P.S., and Kauffman, H.F., 1998, Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53: 114–116.PubMedGoogle Scholar
  153. Travis, J., Salvesen, G.S., 1983, Human plasma proteinase inhibitors. Annu. Rev, Biochem. 52: 655–709.CrossRefGoogle Scholar
  154. Travis, J., Fritz, H., 1991, Potential problems in designing elastase inhibitors for therapy. Am. Rev. Respir. Dis.. 143: 1412–1415.PubMedGoogle Scholar
  155. Tsunemi, M., Kato, H., Nishiuchi, Y., Kumagaye, S., and Sakakibara, S., 1992, Synthesis and structure-activity relationships of elafin, an elastase-specific inhibitor. Biochem. Biophys. Res. Commun. 185: 967–973.CrossRefPubMedGoogle Scholar
  156. Varava, G.N., Barabash, R.D., Levitskii, A.P., Sukmanskii, V.B., and Konovets, V.M., 1976, Effect of electrogingivectomy and elastase inhibitor on the enzymatic activity of the gingiva during the treatment of parodontosis. Stomatologiia 55: 20–23.PubMedGoogle Scholar
  157. Venaille, T.J., Ryan, G., and Robinson, B.W., 1998, Epithelial cell damage is induced by neutrophil-derived, not pseudomonas-derived, proteases in cystic fibrosis sputum. Respir. Med. 92: 233–240.PubMedGoogle Scholar
  158. Vogelmeier, C., Gillissen, A., and Buhl, R., 1996, Use of secretory leukoprotease inhibitor to augment lung antineutrophil elastase activity. Chest 110: 261S–266S.PubMedGoogle Scholar
  159. Vogelmeier, C., Biedermann, T., Maier, K., Mazur, G., Behr, J., Krombach, F., and Buhl, R., 1997, Comparative loss of activity of recombinant secretory leukoprotease inhibitor and alpha )-protease inhibitor caused by different forms of oxidative stress. Eur. Respir. J. 10: 2114–2119.CrossRefPubMedGoogle Scholar
  160. Vogelmeier, C., Kirlath, I, Warrington, S., Banik, N., Ulbrich, E., and Du Bois, R.M.. 1997a, The mtrapulmonary half-life and safety of aerosolized alpha 1-protease inhibitor in normal volunteers. Am. J. Respir. Crit Care Med. 155: 536–541.PubMedGoogle Scholar
  161. Ward, C.I,., Omura, S., and Kopito, R.R., 1995, Degradation of CFTR by the ubiquitin-proteasome pathway Cell 83: 121–127.CrossRefPubMedGoogle Scholar
  162. Wieczorek, M., Gyorkos, A., Spruce, L.W., Ettinger, A., Ross, S.E., Kroona, H.S., Burgos-Lepley, C.E., Bratton, L.D., Drennan, T.S., Garnert, D.L., Von Burg, G., Pilkington, C.G., and Cheronis, J.C., 1999, Biochemical characterization of alpha-ketooxadiazole inhibitors of elaslases. Arch. Biochem. Biophys. 367: 193–201.CrossRefPubMedGoogle Scholar
  163. Wiedow, O., Schroder, J.M., Gregory, H., Young, J.A., and Christophers, E., 1990, Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J. Biol. Chem. 265: 14791–14795.PubMedGoogle Scholar
  164. Wiedow, O., Harder, J., Bartels, J., Streit, V., and Christophers, E., 1998, Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem. Biophys. Res. Commun. 248: 904–909.CrossRefPubMedGoogle Scholar
  165. Williams, C.A., Zori, R.T., Hendrickson, J., Stalker, H., Marum, T., Whidden, E., and Driscoll, D.J., 1995, Angelman syndrome. Curr. Probl. Pediatr. 25: 216–231.PubMedGoogle Scholar
  166. Winyard, P.G., Zhang, Z., Chidwick, K., Blake, D.R., Carrell, R.W., and Murphy, G., 1991, Proteolytic inactivation of human alpha 1 antitrypsm by human stromelysin. FEBS Lett. 279: 91–94.CrossRefPubMedGoogle Scholar
  167. Wojtowicz-Praga, S.M., Dickson, R.B., and Hawkins, M.J., 1997, Matrix metalloproteinase inhbitors. Invest New Drugs 15: 61–75.CrossRefPubMedGoogle Scholar
  168. Wu, S.M., Pizzo, S.V., 1999, Mechanism of hypochlorite-mediated inactivation of proteinase inhibition by alpha 2-macroglobulin. Biochemistry 38: 13983–13990.PubMedGoogle Scholar
  169. Yan, S., Sameni, M., and Sloane, B.F., 1998, Cathepsin B and human tumor progression. Biol. Chem. 379: 113–123.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ute Bank
    • 1
  • Sabine Krüger
    • 2
  • Jürgen Langner
    • 3
  • Albert Roessner
    • 2
  1. 1.Institute of ImmunologyOtto-von-Guericke-UniversityGermany
  2. 2.Institute of PathologyOtto-von-Guericke-UniversityGermany
  3. 3.Institute for Medical ImmunologyMartin Luther UniversityHalle

Personalised recommendations