Advertisement

Sulfhydryl Involvement in Fusion Mechanisms

  • David Avram Sanders
Part of the Subcellular Biochemistry book series (SCBI, volume 34)

Keywords

Disulfide Bond Membrane Fusion Protein Disulfide Isomerase Bovine Leukemia Virus Renin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, B. A., and Brown, D. T., 1993, Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface, J. Virol. 67:5496–5501.Google Scholar
  2. Anthony, R. P., and Brown, D. T., 1991, Protein-protein interactions in an alphavirus membrane, J. Virol. 65:1187–1194.Google Scholar
  3. Anthony, R. P., Paredes, A. M., and Brown, D. T., 1992, Disulfide bonds are essential for the stability of the Sindbis virus envelope, Virology 190:330–336.Google Scholar
  4. Bardwell, J. C., 1994, Building bridges: disulphide bond formation in the cell, Mol. Microbiol. 14:199–205.Google Scholar
  5. Barnoy, S., Glaser, T., and Kosower, N. S., 1997, Calpain and calpastatin in myoblast differentiation and fusion: effects of inhibitors, Biochim. Biophys. Acta. 1358:181–188.Google Scholar
  6. Barnoy, S., Glaser, T., and Kosower, N. S., 1998, The calpain-calpastatin system and protein degradation in fusing myoblasts, Biochim. Biophys. Acta. 1402:52–60.Google Scholar
  7. Barnoy, S., Glasner, T., and Kosower, N. S., 1996, The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion, Biochem. Biophys. Res. Commun. 220:933–938.Google Scholar
  8. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T., and Rothman, J. E., 1988, Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport, Proc. Natl. Acad. Sci. USA 85:7852–7856.Google Scholar
  9. Brody, B. A., Kimball, M. G., and Hunter, E., 1994, Mutations within the transmembrane gly-coprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infec-tivity, Virology 202:673–683.Google Scholar
  10. Carleton, M., and Brown, D. T., 1996, Disulfide bridge-mediated folding of Sindbis virus gly-coproteins, J. Virol. 70:5541–5547.Google Scholar
  11. Carleton, M., and Brown, D. T., 1997, The formation of intramolecular disulfide bridges is required for induction of the Sindbis virus mutant ts23 phenotype, J. Virol. 71:7696–7703.Google Scholar
  12. Carleton, M., Lee, H., Mulvey, M., and Brown, D. T., 1997, Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike, J. Virol. 71:1558–1566.Google Scholar
  13. Cassell, S., Edwards, J., and Brown, D. T., 1984, Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus, J. Virol. 52:857–864.Google Scholar
  14. Clague, M. J., 1998, Molecular aspects of the endocytic pathway, Biochem. J. 336:271–282.Google Scholar
  15. Cooperstein, S. J., and Watkins, D., 1990, Effect of sulfhydryl reagents on pancreatic islet secretion granule-plasma membrane interaction, Pancreas 5:334–341.Google Scholar
  16. Darby, N. J., and Creighton, T. E., 1995, Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase, Biochemistry 34:16770–16780.Google Scholar
  17. DenTulleo, L., and Kirchhausen, T., 1998, The clathrin endocytic pathway in viral infection, Embo. J. 17:4585–4593.Google Scholar
  18. Doh, P. S., Lee, C. J., Hwang, P. M., Cho, K. W., Honeyman, T. W., and Park, C. S., 1991, Role of membrane sulfhydryl groups in stimulation of renin secretion by sulfhydryl reagents, Kidney. Int. 39:867–873.Google Scholar
  19. Fahey, R. C., and Sundquist, A. R., 1991, Evolution of glutathione metabolism, in: Advances in Enzymology and Related Areas of Molecular Biology, A. Meister, ed., John Wiley & Sons, New York, New York, pp. 1–53.Google Scholar
  20. Fass, D., Harrison, S. C., and Kim, P. S., 1996, Retrovirus envelope domain at 1.7 angstrom resolution, Nat. Struct. Biol. 3:465–469.Google Scholar
  21. Fass, D., and Kim, P. S., 1995, Dissection of a retrovirus envelope protein reveals structural similarity to influenza hemagglutinin, Curr. Biol. 5:1377–1383.Google Scholar
  22. Fleming, K. G., Hohl, T. M., Yu, R. C., Muller, S. A., Wolpensinger, B., Engel, A., Engelhardt, H., Brunger, A.T., Sollner, T. H., and Hanson, P. I., 1998, A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein, NSF, J. Biol. Chem. 273:15675–15681Google Scholar
  23. Fra, A. M., Fagioli, C., Finazzi, D., Sitia, R., and Alberini, C. M., 1993, Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation, Embo. J. 12:4755–4761.Google Scholar
  24. Freedman, R. B., 1989, Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins, Cell 57:1069–1072.Google Scholar
  25. Freedman, R. B., Hirst, T. R., and Tuite, M. F., 1994, Protein disulphide isomerase: building bridges in protein folding, Trends Biochem. Sci. 19:331–336.Google Scholar
  26. Gallagher, T. M., 1996, Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein, J. Virol. 70:4683–4690.Google Scholar
  27. Gallaher, W. R., 1996, Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses, Cell 85:477–478.Google Scholar
  28. Gallaher, W. R., Ball, J. M., Garry, R. F., Martin-Amedee, A. M., and Montelaro, R. C., 1995, A general model for the surface glycoproteins of HIV and other retroviruses, AIDS. Res. Hum. Retroviruses. 11:191–202.Google Scholar
  29. Gilbert, H. F., 1990, Molecular and cellular aspects of thiol-disulfide exchange, Adv. Enzymol. Relat. Areas. Mol. Biol. 63:69–172.Google Scholar
  30. Glaser, T., and Kosower, N. S., 1986, Fusion of rat erythrocytes by membrane-mobility agent A2C depends on membrane proteolysis by a cytoplasmic calpain, Eur. J. Biochem. 159:387–392.Google Scholar
  31. Gliniak, B. C., Kozak, S. L., Jones, R. T., and Kabat, D., 1991, Disulfide bonding controls the processing of retroviral envelope glycoproteins, J. Biol. Chem. 266:22991–22997.Google Scholar
  32. Glomb-Reinmund, S., and Kidian, M., 1998, The role of low pH and disdlfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus, Virology 248:372–381.Google Scholar
  33. Goda, Y., and Pfeffer, S. R., 1991, Identification of a novel, N-ethylmaleimide-sensitive cytosolic factor required for vesicular transport from endosomes to the trans-Golgi network in vitro, J. Cell Biol. 112:823–831.Google Scholar
  34. Gray, G. S., White, M., Bartman, T., and Mann, D., 1990, Envelope gene sequence of HTLV-1 isolate MT-2 and its comparison with other HTLV-1 isolates, Virology 1773:391–395.Google Scholar
  35. Gros, C., Linder, M., and Wengler, G., 1997, Analyses of disulfides present in the rubella virus El glycoprotein, Virology 230:179–186.Google Scholar
  36. Haas, A., 1998, NSF-fusion and beyond, Trends Cell Biol 8:471–473.Google Scholar
  37. Hammond, C., and Helenius, A., 1995, Quality control in the secretory pathway, Curr. Opin. CellBiol. 7:523–529.Google Scholar
  38. Hancock, J. E, Magee, A. I., Childs, J. E., and Marshall, C. J., 1989, All ras proteins are poly-isoprenylated but only some are palmitoylated, Cell 97:1167–1177.Google Scholar
  39. Hay, J. C., and Scheller, R. H., 1997, SNAREs and NSF in targeted membrane fusion, Curr. Opin. Cell Biol. 9:505–512.Google Scholar
  40. Henderson, L. E., Sowder, R., Copeland, T. D., Smythers, G., and Oroszlan, S., 1984, Quantitative separation of murine leukemia virus proteins by reversed-phase high-pressure liquid chromatography reveals newly described gag and env cleavage products, J. Virol. 52:492–500.Google Scholar
  41. Holden, H. M., Jacobson, B. L., Hurley, J. K., Tollin, G., Oh, B. H., Skjeldal, L., Chae, Y. K., Cheng, H., Xia, B., and Markley, J. L., 1994, Structure-function studies of [2Fe−2S] ferre-doxins, J. Bioenerg. Biomembr. 26:67–88.Google Scholar
  42. Holmgren, A., 1985, Thioredoxin, Annu. Rev. Biochem. 54:237–271.Google Scholar
  43. Hughson, A. G., Lee, G. F., and Hazelbauer, G. L., 1997, Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor, Protein. Sci. 6:315–322.Google Scholar
  44. Isidoro, C., Maggioni, C., Demoz, M., Pizzagalli, A., Fra, A. M., and Sitia, R., 1996, Exposed thiols confer localization in the endoplasmic reticulum by retention rather than retrieval, J. Biol. Chem. 271:26138–26142.Google Scholar
  45. Jackson, R. C., and Modem, P. A., 1990, N-ethylmaleimide-sensitive protein(s) involved in cortical exocytosis in the sea urchin egg: localization to both cortical vesicles and plasma membrane, J. Cell Sci. 96:313–321.Google Scholar
  46. Jensen, P. E., 1991, Reduction of disulfide bonds during antigen processing: evidence from a thiol-dependent insulin determinant, J. Exp. Med. 174:1121–1130.Google Scholar
  47. Johansson, J., Curstedt, T., and Jornvall, H., 1991, Surfactant protein B: disulfide bridges, structural properties, and kringle similarities, Biochemistry 30:6917–6921.Google Scholar
  48. Jou, Y. H., Mazzaferro, P. K., Mayers, G. L., and Bankert, R. B., 1983, Methods for the attachment of haptents and proteins to erythrocytes, Methods Enzymol. 92:257–276.Google Scholar
  49. Kamps, C. A., Lin, Y. C., and Wong, P. K., 1991, Oligomerization and transport of the envelope protein of Moloney murine leukemia virus-TBand of tsl, a neurovirulenttemperature-sensitive mutant of MoMuLV-TB, Virology 184:687–694.Google Scholar
  50. Katunuma, N., and Kominami, E., 1995, Structure, properties, mechanisms, and assays of cysteine protease inhibitors: cystatins and E-64 derivatives, Methods Enzymol. 251:382–397.Google Scholar
  51. Kosower, N. S., and Kosower, E. M., 1995a, Diamide: an oxidant probe for thiols, Methods Enzymol. 251:123–133.Google Scholar
  52. Kosower, E. M., and Kosower, N. S., 1995b, Bromobimane probes for thiols, Methods Enzymol. 251:133–148.Google Scholar
  53. Lewis, M. S., and Youle, R. J., 1986, Ricin subunit association. Thermodynamics and the role of the disulfide bond in toxicity, J. Biol. Chem. 261:11571–11577.Google Scholar
  54. Linder, M., Linder, D., Hahnen, J., Schott, H. H., and Stirm, S., 1992, Localization of the intrachain disulfide bonds of the envelope glycoprotein 71 from Friend murine leukemia virus, Eur. J. Biochem. 203:65–73.Google Scholar
  55. Linder, M., Wenzel, V., Linder, D., and Stirm, S., 1994, Structural elements in glycoprotein 70 from polytropic Friend mink cell focus-inducing virus and glycoprotein 71 from ecotropic Friend murine leukemia virus, as defined by disulfide-bonding pattern and limited proteolysis, J. Virol. 68:5133–5141.Google Scholar
  56. Lodish, H. F., and Kong, N., 1993, The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum, J. Biol. Chem. 268:20598–20605.Google Scholar
  57. Lundblad, R. L., 1991, The modification of cysteine, in: Chemical reagents for protein modification, CRC Press, Boca Raton, Florida, pp. 55–93.Google Scholar
  58. Majoul, I. V., Bastiaens, P. I., and Soling, H. D., 1996, Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells, J. Cell Biol. 133:777–789.Google Scholar
  59. Mammoto, A., Masumoto, N., Tahara, M., Ikebuchi, Y., Ohmichi, M., Tasaka, K., and Miyake, A., 1996, Reactiveoxygenspeciesblocksperm-eggfusionviaoxidationofsperm sulfhydryl proteins in mice, Biol. Reprod. 55:1063–1068.Google Scholar
  60. Mammoto, A., Masumoto, N., Tahara, M., Yoneda, M., Nishizaki, T., Tasaka, K., and Miyake, A., 1997, Involvement of a sperm protein sensitive to sulfhydryl-depleting reagents in mouse sperm-egg fusion, J. Exp. Zool. 278:178–188.Google Scholar
  61. Mandel, R., Ryser, H. J., Ghani, E, Wu, M., and Peak, D., 1993, Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase, Proc. Natl. Acad. Sci. USA 90:4112–4116.Google Scholar
  62. Marsh, M., and Helenius, A., 1989, Virus entry into animal cells, Adv. Virus. Res. 36:107–151.Google Scholar
  63. Matveeva, E. A., He, P., and Whiteheart, S. W., 1997, N-Ethylmaleimide-sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct, J. Biol. Chem. 272:26413–26418Google Scholar
  64. Meyer, W. J., Gidwitz, S., Ayers, V. K., Schoepp, R. J., and Johnston, R. E., 1992, Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH, J. Virol. 66:3504–3513.Google Scholar
  65. Mulvey, M., and Brown, D. T., 1994, Formation and rearrangement of disulfide bonds during maturation of the Sindbis virus El glycoprotein, J. Virol. 68:805–812.Google Scholar
  66. Nichols, B. J., and Pelham, H. R., 1998, SNAREs and membrane fusion in the Golgi apparatus, Biochim. Biophys. Acta. 1404:9–31.Google Scholar
  67. Opstelten, D. J., Wallin, M., and Garoff, H., 1998, Moloney murine leukemia virus envelope protein subunits, gp70 and Pr15E, form a stable disulfide-linked complex, J. Virol. 72:6537–6545.Google Scholar
  68. Papini, E., Rappuoli, R., Murgia, M., and Montecucco, C., 1993, Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol, J. Biol. Chem. 268:1567–1574.Google Scholar
  69. Park, C. S., Doh, P. S., Lee, C. J., Han, D. S., Carraway, R. E., and Miller, T. B., 1991, Cellular mechanism of stimulation of renin secretion by the mercurial diuretic mersalyl, J. Pharmacol. Exp. Ther. 257:219–224.Google Scholar
  70. Pinter, A., and Fleissner, E., 1977, The presence of disulfide-linked gp70-p15(E) complexes in AKR murine leukemia virus, Virology 83:417–422.Google Scholar
  71. Pinter, A., and Honnen, W. J., 1983, Topography of murine leukemia virus envelope proteins: characterization of transmembrane components, J. Virol. 46:1056–1060.Google Scholar
  72. Pinter, A., Kopelman, R., Li, Z., Kayman, S. C., and Sanders, D. A., 1997, Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active site sequence of thiol-disulfide exchange enzymes., J. Virol. 71:8073–8077.Google Scholar
  73. Pinter, A., Lieman-Hurwitz, J., and Fleissner, E., 1978, The nature of the association between the murine leukemia virus envelope proteins, Virology 91:345–351.Google Scholar
  74. Publicover, S. J., and Duncan, C. J., 1981, Diamide, temperature and spontaneous transmitter release at the neuromuscular junction: stimulation of exocytosis by a direct effect on membrane fusion?, Eur. J. Pharmacol. 70:203–211.Google Scholar
  75. Reddy, P., Sparvoli, A., Fagioli, C., Fassina, G., and Sitia, R., 1996, Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains, Embo. J. 15:2077–2085.Google Scholar
  76. Rippa, M., Bellini, T., Signorini, M., and Dallocchio, F., 1981, Evidence for multiple pairs of vicinal thiols in some proteins, J. Biol. Chem. 256:451–455.Google Scholar
  77. Roberts, P. C., Garten, W., and Klenk, H. D., 1993, Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin, J. Virol. 67:3048–3060.Google Scholar
  78. Robinson, L. J., and Martin, T. F., 1998, Docking and fusion in neurosecretion, Curr. Opin. Cell Biol. 10:483–492.Google Scholar
  79. Rodriguez, L., Stirling, C. J., and Woodman, P. G., 1994, Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion, Mol. Biol. Cell 5:773–783.Google Scholar
  80. Russel, M., and Model, P., 1988, Sequence of thioredoxin reductase from Escherichia coli. Relationshiptootherflavoproteindisulfideoxidoreductases, J. Biol. Chem. 263:9015–9019.Google Scholar
  81. Ryser, H. J., Levy, E. M., Mandel, R., and DiSciullo, G. J., 1994, Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction, Proc. Natl. Acad. Sci. USA 91:4559–4563.Google Scholar
  82. Ryser, H. J., Mandel, R., and Ghani, F., 1991, Cell surface sulfhydryls are required for the cytotoxicity of diphtheria toxin but not of ricin in Chinese hamster ovary cells, J. Biol. Chem. 266:18439–18442.Google Scholar
  83. Sagata, N., Yasunaga, T., Tsuzuku-Kawamura, J., Ohishi, K., Ogawa, Y., and Ikawa, Y., 1985, Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses, Proc. Natl. Acad. Sci. USA 82:677–681.Google Scholar
  84. Sahlman, L., and Skarfstad, E. G., 1983, Mercuric ion binding abilities of MerP variants containing only one cysteine, Biochem. Biophys. Res. Commun. 196:583–538.Google Scholar
  85. Salminen, A., Wahlberg, J. M., Lobigs, M., Liljestrom, P., and Garoff, H., 1992, Membrane fusion process of Semliki Forest virus. 11: Cleavage-dependent reorganization of the spike protein complex controls virus entry, J. Cell Biol. 116:349–357.Google Scholar
  86. Schatten, H., 1994, Dithiothreitol preventsmembranefusion but notcentrosomeor micro-tubule organization during the first cell cycles in sea urchins, Cell Motil Cytoskeleton 27:59–68.Google Scholar
  87. Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G., 1981, Nucleotide sequence of Moloney murine leukaemia virus, Nature 293:543–548.Google Scholar
  88. Sokoloff, A. V., Whalley, T., and Zimmerberg, J., 1995, Characterization of N-ethylmaleimide-sensitive thiol groups required for the GTP-dependent fusion of endoplasmic reticulum membranes, Biochem. J. 312:23–30.Google Scholar
  89. Sonigo, P., Barker, C., Hunter, E., and Wain-Hobson, S., 1986, Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus, Cell 45:375–385.Google Scholar
  90. Steel, G. J., Laude, A. J., Boojawan, A., Harvey, D. J., and Morgan, A., 1999, Biochemical analysis of the saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion, Biochemistry 387:7764–7772.Google Scholar
  91. Strauss, J. H., and Strauss, E. G., L994, The alphaviruses: gene expression, replication, and evolution, Microbiol. Rev. 58:491–562.Google Scholar
  92. Sturman, L S., Ricard, C. S., and Holmes, K. V., 1990, Conformationallchange of the coronavirus peplomer glycoprotein at pH 8. 0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion, J. Virol. 64:30042–3050.Google Scholar
  93. Tagaya, M., Wilson, D. W., Bnunner, M., Arango, N., and Rothman, J. E., 1993, Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport, J. Biol. Chem. 258:2662–2666.Google Scholar
  94. Valetti, C., and Sitia, R., 1994, The differential effects of dithiothreitol and 2-mercaptoethanol on the secretion of partially and completely assembled immunoglobulins suggest that thiol-mediated retention does not take place in or beyond the Golgi, Mol. Biol. Cell 5:1311–1324.Google Scholar
  95. Vogel, S. S., Chemomordik, L. V., and Zimmerberg, J, 1992, Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane, J. Biol. Chem. 267:25640–25643.Google Scholar
  96. Vogel, S. S., Delaney, K., and Zimmerberg, J., 1991, The sea urchin cortical reaction. A model system for studying the final steps of calcium-triggered vesicle fusion, Ann. N. Y. Acad. Sci. 63:53–54.Google Scholar
  97. Vogel, S. S., and Zimmerberg, J., 1992, Proteins on exocytic vesicles mediate calcium-triggered fusion, Proc. Natl. Acad. Sci. USA 89:4749–4753.Google Scholar
  98. Wahlberg, J. M., Bron, R., Wilschut J., and Garoff, H., 1992, Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein, J. Virol. 66:7309–7318.Google Scholar
  99. Weber, E., Papamokos, E., Bode, W., Huber, R., Kato, I., and Laskowski, M., Jr., 1981, Crystallieation, crystal structure analysis and molecular model of the third domain of Japanese quail ovomucoid, a Kazal type inhibitor, J. Mol. Biol. 149:109–123.Google Scholar
  100. Wells, W. W., Yang, Y., Deits, T. L., and Gan, Z. R., 1993, Thioltransferases, Adv. Enzymol. Relat. Areas. Mol. Biol. 66:149–201.Google Scholar
  101. Whalley, T., and Sokoloff A., 1994, The N-ethylmaleimide-sensitive protein thiol groups necessary for seaurchin egg cortical-granule exocytosis are highly exposed to the medium and are required for triggering by Ca2+, Biochem. J. 302:391–396.Google Scholar
  102. Whiteheart, S. W., Rossnagel, K., Buhrow, S. A, Brunner, M., Jaenicke, R, and Rothman, J. E., 1994, N-ethylmaIeimide-sensitive fusion protein a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion, J. Cell Biol. 126:945–954.Google Scholar
  103. Witte, O. N., Tsukamoto, A. A., and Weissman, I. L., 1977, Cellular maturation of oncornavirus glycoproteins: topological arrangement of precursor and product Forms in cellular membranes, Virology 76:539–553Google Scholar
  104. Woodman, P. G., 1997, The roles of NSF, SNAPs and SNAREs during membrane fusion, Biochim. Biophys. Acta 1357:155–172.Google Scholar
  105. Zapun, A., Bardwell, J. C., and Creighton, T. E., 1993, The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo, Biochemistry 32:5083–5092.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David Avram Sanders
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest Lafayette

Personalised recommendations