Advertisement

G Protein-Coupled Receptors, or The Power of Data

  • Florence Horn
  • Mustapha Mokrane
  • Johnathon Weare
  • Gerrit Vrien

Keywords

Muscarinic Receptor Motion Sickness GPCR Family Amine Receptor GPCR Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attwood, T.K., Croming, M.D., Elowen, D.R., Lewis, A.P., Mabey, J.E., Scordis, P., Selley, J.N., and Wright, W. (2000) PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res. 28, 225–227.PubMedCrossRefGoogle Scholar
  2. Bairoch, A. and Apweiler, R. (2000) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 28, 45–48.PubMedGoogle Scholar
  3. Baker, W., Vandcn Broel, A., Camon, E., Hingamp, P., Sterk, P., Stoesser, G., and Tuli, M.A. (2000) The EMRL Nucleotide Sequence Database. Nucleic Acid Res. 28, 19–23.PubMedGoogle Scholar
  4. Baldwin, J.M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.PubMedGoogle Scholar
  5. Baldwin, J.M., Schertler, G.F.X., and Unger, V.M. (1997) An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J. Mol. Biol. 272, 144–164.PubMedCrossRefGoogle Scholar
  6. Benson, D.A., Karsch-Mirrachi, I.. Lipman, D.J., Ostell, J., Rapp, B.A., and Wheeler, D.L. (2000) GenBank. Nucleic Acid Res. 28, 15–18.PubMedGoogle Scholar
  7. Beukers, M.B., Kristiansen, K., IJzerman, A.P., and Edvardsen, O. (1999) TinyGRAP database: a bioinformatics tool tomine G protein-coupled receptor mutant data. Trends Pharmacal. Sci. 20, 475–477.Google Scholar
  8. Brown, N.P., Leroy, C., and Sander, C. (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14, 380–381.PubMedGoogle Scholar
  9. Campagne, F., Jestin, R., Recerasak, J.L., Bernassau, J.M., and Maigret, B. (1999) Visualisation and integration of Gprotein-coupled receptor related information help the modelling: description and application of the VISEUR program. J. Comput Aided Mol. Des. 13, 625–643.PubMedCrossRefGoogle Scholar
  10. Choudhary, M.S., Craigo, S.,and Roth, B.L. (1993) A single point mutation (Phe340-Leu340) of a conserved phenylalanine abolishes 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]mesulergine but not [3H]ketanserin binding to 5-hydroxytryptamine2 receptors. Mol. Pharmacol. 43, 755–761.PubMedGoogle Scholar
  11. Cronet, P., Sander, C., and Vriend, G. (1993) Modelling of transmembrane seven helix bundles. Prot. Eng. 6, 59–64.Google Scholar
  12. Devereux, J. (1989) The GCG Sequence Analysis Software Package, Version 6.0. Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wisconsin, USA, 53705.Google Scholar
  13. Edvardsen, ø and Kristiansen, K.(1997) Computerization of mutant data: the tinyGRAP mutant database. 7TM journal 6, 1–6.Google Scholar
  14. Etzold, T., Ulyanov, A., and Argos, P. (1996) SRS: information retrieval system for molecular biology data banks. Methods Enzymol. 266, 114–128.PubMedGoogle Scholar
  15. Gouldson, P.R., Snell, C.R., and Reynolds, C.A. (1997) A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors. J. Med. Chem. 40, 3871–3886.PubMedCrossRefGoogle Scholar
  16. Gudermann, T., Nurnberg, B., and Schultz, G. (1995) Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J. Mol. Med. 73, 51–63.PubMedCrossRefGoogle Scholar
  17. Guex, N. and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.PubMedCrossRefGoogle Scholar
  18. Hibert, M.F., Trumpp-Kallmeyer, S., Bruinvels, A., and Hoflack, J. (1991) Three dimensional models of neurotransmitter G-binding protein coupled receptors. Mol. Pharm. 40, 8–15.Google Scholar
  19. Hol, W.G.J. (1986) Protein crystallography and Computer graphics—toward rational drug design. Ang. Chem. 25, 767–777.CrossRefGoogle Scholar
  20. Horn, F., Bywater, R., Krause, G., Kuipers, W., Oliveira, L., Paiva, A.C.M., Sander, C., and Vriend, G. (1998a) The interaction of class B G protein-coupled receptors with their hormones. Receptors Channels 5, 305–314.PubMedGoogle Scholar
  21. Horn, F., Vander Wenden, E.M., Oliveira, L., IJzerman, A.P., and Vriend, G. (2000) Receptors coupling to G proteins: Is there signal behind the sequence. Proteins, accepted.Google Scholar
  22. Horn, F., Weare, J., Beukers, M.W., Horsch, S., Bairoch, A., Chen, W., Edvardsen, ø., Campagne, F., and Vriend, G. (1998b) GPCRDB: an information system for G protein coupled receptors. Nucleic Acids Res. 26, 277–281.CrossRefGoogle Scholar
  23. Kolakowski, L.F. Jr (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1–7PubMedGoogle Scholar
  24. Kristiansen, K., Dahl, S.G., and Edvardsenm ø.(1996) A database of mutants and effects of site-directed mutagenesis experiments on G-proteincoupled receptors. Proteins 26, 81–94.PubMedCrossRefGoogle Scholar
  25. Kuipers, W., Oliveira, L., Paiva, A.C.M., Rippman, F., Sander, C., and IJzerman, A.P. (1996) Analysis of G Protein-Coupled Receptor Function. In “Membrane Protein Models” (Ed. Findlay, J.), Bios Scientific Publishers Ltd: Oxford, pp 27–45.Google Scholar
  26. Luecke, H., Richter, H.-T., and Lanyi, J.K. (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution. Science 280, 1934–1937.PubMedCrossRefGoogle Scholar
  27. Oliveira, L., Paiva, A.C.M., and Vriend, G. (1993) A model for G-protein coupled receptors. J. Comp. Aided Mol. Des. 7, 649–658.Google Scholar
  28. Oliveira, L., Paiva, A.C.M., and Vriend, G. (1995) Correlated mutations analysis of G protein a-chains to search for residues linked to binding. In “Peptides: Chemistry, Structure and Biology” (Eds Kazonaya, P.T.P. and Hodges, R.S.), Mayflower Scientific Ltd.Google Scholar
  29. Oliveira, L., Paiva, A.C.M., Sander, C., and Vriend, G. (1994) A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol. Sci. 15, 176–172.CrossRefGoogle Scholar
  30. Oliveira, L., Paiva, A.C.M., Vriend, G. (1999) A low resolution model for the interaction of G proteins with GPCRs. Prot. Enging. 12, 1087–1095.Google Scholar
  31. Pebay-Peroula, E., Rummel, G., Rosenbusch, J.P., and Landau, E.M. (1997) X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipid cubic phases. Science 277, 1676–1681.Google Scholar
  32. Sander, C. and Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68PubMedCrossRefGoogle Scholar
  33. Sayle, R. and Milner-White, E.J. (1995) RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376.PubMedCrossRefGoogle Scholar
  34. Schertler, G.F.X. (1998) Structure of rhodopsin. Eye 12, 504–510.PubMedGoogle Scholar
  35. Schertler, G.F.X., Villa, C., and Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770–772.PubMedCrossRefGoogle Scholar
  36. Seeman, P. (1993) Receptor Tables, vol.2: Drug dissociation constants for neuroreceptors and transporters. Toronto: SZ Research.Google Scholar
  37. Singer, M.S., Oliveira, L., Vriend, G., and Shepherd, G.M. (1995) Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis. Receptors Channels 3, 89–95.PubMedGoogle Scholar
  38. Skoufes E., Marenko, L., Nadkami, P.M., Miller, P.L., and Shepherd, G.M. (2000) Olfactory receptor database: a sensory chemoreceptor resource. Nucleic Acid Res. 28, 341–343.Google Scholar
  39. Strader, C.D., Sigal, I.S., and Dixon, R.A. (1989) Structural basis of beta-adrenergic receptor function. FASEB J. 3, 1825–1832.PubMedGoogle Scholar
  40. Takeda, K., Sati, H., Hino, T., Kono, M., Fukuda, K., Sakurai, I., Okada, T., and Kouyama, T. (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of vesicular assemblies. J. Mol. Biol. 283, 463–474.PubMedCrossRefGoogle Scholar
  41. Tateno, Y., Miyazaki, S., Ota, M., Sugawara, H., and Gojobori, T. (2000) DNA data bank of Japan (DDBJ) in collaboration with mass sequencing teams. Nucleic Acid Res. 28, 24–26.PubMedGoogle Scholar
  42. Unger, V.M. and Schertler, G.F.X. (1995) Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys. J. 68, 1776–1786.PubMedCrossRefGoogle Scholar
  43. Unger, V.M., Hargrave, P.A., Baldwin, J.M., and Schertler, G.F.X. (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389, 203–206.PubMedGoogle Scholar
  44. van Rhee, A.M. and Jacobson, K.A. (1996) Molecular Architecture of G Protein-Coupled Receptors. Drug Devel Res. 37, 1–38.Google Scholar
  45. Vriend, G.(1990) WHAT IF: A molecular modelling and drug design program. J. Mol. Graph. 8, 52–56.PubMedGoogle Scholar
  46. Watson, S. and Arkinstall, S. (Eds.) (1994) The G-protein linked receptor facts book. Academic Press.Google Scholar
  47. Wess, J., Gdula, D. and Brann, M.R. (1991) Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J. 10, 3729–3734.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Florence Horn
    • 1
  • Mustapha Mokrane
    • 2
  • Johnathon Weare
    • 1
  • Gerrit Vrien
    • 1
  1. 1.European Molecular Biology LaboratoryBIO computingHeidelbergGermany
  2. 2.Laboratoire de Génétique et de Physiologie du DéveloppementUniversité de la MéditerranéeMarseille Cedex 9France

Personalised recommendations