Human Mononuclear Phagocyte Nitric Oxide Production and Inducible Nitric Oxide Synthase Expression

  • J. Brice Weinberg

Summary and Conclusion

Despite lingering controversy,it is evident from a detailed review of the literature that human mononuclear phagocytes can be stimulated by various means both in vitro and in vivo to express NOS2 and produce NO.It is difficult to quantitatively compare levels of NO production and NOS2 expression by human and murine mononuclear phagocytes.However,based on several studies in which both murine and human cells have been examined in parallel under identical conditions,human cells appear to produce less NO and express lower levels of NOS2 than do murine cells.This might help to explain the innate resistance of mice to certain human pathogens (e.g.,Mycobacterium tuberculosis).Despite the apparent species differences,it is very likely that human mononuclear phagocyte-generated NO is important in certain pathological states (e.g.,in resistance to infection and mediation of inflammation),and possibly under normal physiological conditions as well.Pharmacological modulation of mononuclear phagocyte NO production should prove to be a useful therapeutic option in some disease states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albina, J. E., 1995, On the expression of nitric oxide synthase by human macrophages—why no NO? J. Leukoc. Biol. 58:643–649.PubMedGoogle Scholar
  2. Ambs, S., Merriam, W. G., Bennett, W. P., Felleybosco, E., Ogunfusika, M. O., Oser, S. M., Klein, S., Shields, P. G., Billiar, T. R., and Harris, C. C., 1998, Frequent nitric oxide synthase-2 expression in human colon adenomas—implication for tumor angiogenesis and colon cancer progression, Cancer Res. 58:334–341.PubMedGoogle Scholar
  3. Amin, A. R., Attur, M., Vyas, P., Leszczynska-Piziak, J., Levartovsky, D., Rediske, J., Clancy, R. M., Vora, K. A., and Abramson, S.B.,1997, Expression of nitric oxide synthase in human peripheral blood mononuclear cells and neutrophils, J.Inflamm. 47:190–205.Google Scholar
  4. Anstey, N. M., Weinberg, J. B., Hassanali, M., Mwaikambo, E. D., Manyenga, D., Misukonis, M. A., Arnelle, D. R., Hollis, D., McDonald, M. I., and Granger, D. L, 1996, Nitric oxide in Tanzanian children with malaria. Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression, J. Exp. Med. 184:557–567.PubMedCrossRefGoogle Scholar
  5. Aubry, J. P., Dugas, N., Lecoanet-Henchoz, S., Ouaaz, F., Zhao, H. X., Delfraissy, J. F., Graber, P., Kolb, J. P., Dugas, B., and Bonnefoy, J. Y., 1997, The 25-kDa soluble CD23 activates type III constitutive nitric oxide-synthase activity via CD11b and CD 11c expressed by human monocytes, J. Immunol. 159:614–622.PubMedGoogle Scholar
  6. Auwerx, J., 1991, The human leukemia cell line, THP-1: A multifaceted model for the study of monocyte-macrophage differentiation, Experientia (Basel) 47:22–31.Google Scholar
  7. Bagasra, O., Bobroski, F., Sarker, A., Bagasra, A., Saikumari, P., and Pomerantz, R. J., 1997, Absence of the inducible form of nitric oxide synthase in the brains of patients with the acquired immunodeficiency syndrome, J. Neurovirology 3:153–167.CrossRefGoogle Scholar
  8. Bagasra, O., Michaels, F. H., Zheng, Y. M., Bobroski, L. E., Spitsin, S. V., Fu, Z. F., Tawadros, R., and Koprowski, H., 1995, Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis, Proc. Natl.Acad. Sci.USA 92:12041 12045.PubMedGoogle Scholar
  9. Barnewall, R. E., and Rikihisa, Y., 1994, Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytcs with iron-transferrin, Infect. Immun. 62:4804–4810PubMedGoogle Scholar
  10. Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J.P., 1994a, Oxidative chemistry of peroxynitrite, Methods Enzymol. 233:229–240.PubMedGoogle Scholar
  11. Beckman, J. S., Ye, Y. Z., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., and White, C. R., 1994b, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohis-tochemistry. Biol. Chem. Hoppe-Seyler 375:81–88.Google Scholar
  12. Belenky, S. N., Robbins, R. A., and Rubinstein, I., 1993, Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro, J. Leukoc. Biol. 53:498–503.PubMedGoogle Scholar
  13. Ben-Efraim, S., Tak, C., Fieren, M. J. W. A., Romijn, J. C., Beckmahn, I., and Bonta, I. L., 1993, Activity of human peritoneal macrophages against a human tumor: Role of tumor necrosis factor-ℑ PGL2 and nitrite, in vitro studies, Immunol. Lett. 37:27–33.PubMedCrossRefGoogle Scholar
  14. Bermudez, L. E., 1993, Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide, Clin. Exp. Immunol. 91:277–281.PubMedGoogle Scholar
  15. Bo, L., Dawson, T. M., Wesselingh, S.., Mork, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D., 1994, Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains, Ann Neurol. 36:778–786.PubMedGoogle Scholar
  16. Bose, M., and Farnia, P., 1995, Proinflammatory cytokines can significantly induce human mononuclear phagocytes to produce nitric oxide by a cell maturation-dependent process, Immunol. Lett. 48:59–64.PubMedCrossRefGoogle Scholar
  17. Bredt, D. S., and Snyder, S. H., 1994, Nitric oxide: A physiologic messenger molecule, Annu. Rev. Biochem. 63:175–195.PubMedCrossRefGoogle Scholar
  18. Bukrinsky, M. I., Nottet, H., Schmidtmayerova, H., Dubrovsky, L., Flanagan, C. R., Mullins, M. E., Lipton, S. A., and Gendelman, H. E., 1995, Regulation of nitric oxide synthase activity in human immunodeficiency virus type I (HIV-1)-infected monocytes—Implications for HIV-associated neurological disease, J. Exp. Med. 181:735–745.PubMedCrossRefGoogle Scholar
  19. Buttery, L. D. K., Springall, D. R., Chester, A. H., Evans, T. J., Standfield, N., Parums, D. V., Yacoub, M. H., and Polak, J. M., 1996, Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite, Lab Invest. 75:77–85.PubMedGoogle Scholar
  20. Cameron, M. L., Granger, D. L., Weinberg, J. B., Kozumbo, W. J., and Koren, H. S., 1990, Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate, Am. Rev. Respir. Dis. 142:1313–1319.PubMedGoogle Scholar
  21. Chen, F., Kuhn, D. C., Gaydos, L. J., and Demers, L. M., 1996, Induction of nitric oxide and nitric oxide synthase mRNA by silica and lipopolysaccharide in PMA-primed THP-1 cells, APMIS 104:176–182.PubMedGoogle Scholar
  22. Chen, L. Y., and Metha, J. L., 1996, Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets, J. Cardiovasc. Pharmacol. 27:154–158.PubMedGoogle Scholar
  23. Chu, S. C., Wu, H. P., Banks, T. C., Eissa, N. T., and Moss, J., 1995, Structural diversity in the 5′-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA, J. Biol. Chem. 270:10625–10630.PubMedCrossRefGoogle Scholar
  24. Clancy, R. M., and Abramson. S. B., 1995, Nitric oxide—A novel mediator of inflammation, Proc. Soc. Exp. Biol. Med. 210:93–101.PubMedGoogle Scholar
  25. Cobbs, C. S., Brenman, J. E., Aldape, K. D., Bredt, D. S., and Israel, M. A., 1995, Expression of nitric oxide synthase in human central nervous system tumors, Cancer Res. 55:727–730.PubMedGoogle Scholar
  26. Collins, S. J., 1987, The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression, Blood 70:1233–1244.PubMedGoogle Scholar
  27. Condino-Neto, A., Muscara, M. N., Grumach, A. S., Carneiro-Sampaio, M. M., and DeNucci, G., 1993, Neutrophils and mononuclear cells from patients with chronic granulomatous disease release nitric oxide, Br. J. Clin. Pharmacol 35:485–490.PubMedGoogle Scholar
  28. Condino-Neto, A., Muscara, M. N., Bellinatipires, R., Carneiro-Sampaio, M. M. S., Brandao, A. C., Grumach, A. S., and DeNucci, G., 1996, Effect of therapy with recombinant human interferon-gamma on the release of nitric oxide by neutrophils and mononuclear cells from patients with chronic granulomatous disease, J. Interferon Cytokine Res. 16:357–364.PubMedGoogle Scholar
  29. Criado-Jimenez, M., Rivas-Cabanero, L., Martin-Oterino, J. A., Lopez-Novoa, J. M., and Sanchez-Rodriguez, A., 1995, Nitric oxide production by mononuclear leukocytes in alcoholic cirrhosis, J. Mol. Med. 73:31–33.PubMedGoogle Scholar
  30. DeGroot, C. J. A., Ruuls, S. R., Theeuwes, J. W. M., Dijkstra, C. D., and Vandervalk, P., 1997, Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions, J. Neuropathol. Exp. Neurol. 56:10–20.Google Scholar
  31. DeMaria, R., Cifone, M. G., Trotta, R., Rippo, M. R., Festuccia, C., Santoni, A., and Testi, R., 1994, Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors, J. Exp. Med. 180:1999–2004.Google Scholar
  32. Denis, M., 1991, Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: Killing effector mechanism depends on the generation of reactive nitrogen intermediates, J. Leukoc. Biol. 49:380–387.PubMedGoogle Scholar
  33. Denis, M.,1994, Human monocytes/macrophages: NO or no NO? J. Leukoc. Biol. 55:682–684.Google Scholar
  34. Dias-Da-Motta, P., Arruda, V. R., Muscara, M. N., Saad, S. T., DeNucci, G., Costa, F. F., and Condinoneto, A., 1996, The release of nitric oxide and superoxide anion by neutrophils and mononuclear cells from patients with sickle cell anaemia, Br. J. Haematol. 93:333–340.PubMedCrossRefGoogle Scholar
  35. Ding, A. H., Nathan, C. F., and Stuehr, D. J., 1988, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J. Immunol. 141:2407–2412.PubMedGoogle Scholar
  36. Dugas, N., Vouldoukis, I., Becherel, P., Arock, M., Debre, P., Tardieu, M., Mossalayi, D. M., Delfraissy, J. F., Kolb, J. P., and Dugas, B., 1996, Triggering of CD23b antigen by anti-CD23 monoclonal antibodies induces interleukin-10 production by human macrophages, Eur. J. Inmmunol. 26:1394–1398.Google Scholar
  37. Dumarey, C. H., Labrousse, V, Rastogi, N., Vargaftig, B. B., and Bachelet, M., 1994, Selective Mycobacterium aviuminducedproduction of nitric oxide by human monocyte-derived macrophages, J. Leukoc. Biol. 56:36–40.PubMedGoogle Scholar
  38. Eis, A. L. W., Brockman, D. E., and Myatt, L., 1997, Immunolocalization of the inducible nitric oxide synthase isoform in human fetal membranes, Am. J. Reprod. Immunol. 38:289–294.PubMedGoogle Scholar
  39. Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and van der Vliet, A., 1998, Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils, Nature 391:393–397.PubMedCrossRefGoogle Scholar
  40. Eissa, N. T, Strauss, A. J., Haggerty, C. M., Choo, E. K., Chu, S. C., and Moss, J., 1996, Alternative splicing of human inducible nitric-oxide synthase mRNA. Tissue-specific regulation and induction by cytokines, J. Biol. Chem. 271:27184–27187.PubMedGoogle Scholar
  41. Essery, S. D., Saadi, A. T., Twite, S. J., Weir, D. M., Blackwell, C. C., and Busuttil A., 1994, Lewis antigen expression on human monocytes and binding of pyrogenic toxins, Agents Actions 41:108–110.PubMedCrossRefGoogle Scholar
  42. Eue, I., Zeisig, R., and Arndt, D., 1995, Alkylphosphocholine-induced production of nitric oxide and tumor necrosis factor alpha by U937 cells, J. Cancer Res. Clin. Oncol. 121:350–356.PubMedCrossRefGoogle Scholar
  43. Feelisch, M., and Stamler, J. S., 1996, Methods in Nitric Oxide Research, Wiley, New York.Google Scholar
  44. Goto, H., Nakamura, T., Shirabe, S., Ueki, Y., Nishiura, Y., Furuya, T., Tsujino, A., Nakane, S., Eguchi, K., and Nagataki, S., 1997, Up-regulation of NOS2 mRNA expression and increased production of NO in human monoblast cell line U937 transfected by HTLV-I tax gene, Immunobiology 197:513–521.PubMedGoogle Scholar
  45. Grabowski, P. S., Wright, P. K., Vanthof, R. J., Helfrich, M. H., Ohshima, H., and Ralston, S. H., 1997, Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis, Br. J. Rheumatol. 36:651–655.PubMedCrossRefGoogle Scholar
  46. Granger, D. L., Hibbs, J. B., Jr., Perfect, J. R., and Durack, D. T., 1988, Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages, J. Clin. Invest. 81:1129–1136.PubMedGoogle Scholar
  47. Granger, D. L., Taintor, R. R., Boockvar, K. S., and Hibbs, J. B., Jr., 1995, Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction, Methods. A Companion to Methods in Enzymology 7:78–83.Google Scholar
  48. Green, L. C., de Luzuriaga, K. R., Wagner, D. A., Rand, W., Istfan, N., Young, V. R., and Tannenbaum, S. R., 1981, Nitrate biosynthesis in man, Proc. Natl. Acad. in.USA 78:7764–7768.Google Scholar
  49. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., 1982, Analysis ofnitrate, nitrite, and [15N]nitrae in biologicalfluids. Anal.Biochem. 126:131–138.PubMedCrossRefGoogle Scholar
  50. Gyan, B., Troye-Blomberg, M., Perlmann, P., and Bjorkman, A., 1994, Human monocytes cultured with and withoutinterferon-gamma inhibit Plasmodium falciparum parasite growth in vitro via secretion of reactive nitrogen intermediates, Parasite Immunol. 16:371–375.PubMedGoogle Scholar
  51. Haddad, I. Y., Pataki, G., Hu, P., Galliani, C., Beckman, J. S., and Matalon, S., 1994, Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury, J. Clin. Invest. 94:2407–2413.PubMedGoogle Scholar
  52. Harwix, S., Andreesen, R., Ferber, E., and Schwamberger, G., 1992, Human macrophagessecrete a ftumoricidal activity distinct from tumour necrosis factor-α and reactive nitrogen intermediates, Res. Immunol. 143:89–94.PubMedGoogle Scholar
  53. Hibbs, J. B., Jr., Westenfelder, C., Taintor, R., Vavrin, Z., Kablitz, C., Baranowski, R. L., Ward, J. H., Menlove, R. L., McMurry, M. P., Kushner, J. P., and Samlowski, W. E., 1992, Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy, J. Clin. Invest. 89:867–877.PubMedGoogle Scholar
  54. Hooper, D. C., Bagasra, O., Marini, J. C., Zborek, A., Ohnishi, S. T., Kean, R., Champion, J. M., Sarker, A. B., Bobroski, L., Farber, J. L., Akaike, T., Maeda, H., and Koprowski, H., 1997, Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: Implications for the treatment of multiple sclerosis, Proc. Natl. Acad. Sci. USA 94:2528–2533.PubMedCrossRefGoogle Scholar
  55. Hunt, N. C., and Goldin, R. D., 1992, Nitric oxide production by monocytes in alcoholic liver disease, J. Hepatol. 14:146–150.PubMedCrossRefGoogle Scholar
  56. Ikeda, I., Kasajima, T., Ishiyama, S., Shimojo, T., Takeo, Y., Nishikawa, T., Kameoka, S., Hiroe, M., and Mitsunaga, A., 1997, Distribution of inducible nitric oxide synthase in ulcerative colitis, Am. J. Gastroenterol. 92:1339–1341.PubMedGoogle Scholar
  57. Kashem, A., Endoh, M., Yano, N., Yamauchi, F., Nomoto, Y., and Sakai, H., 1996, Expression of inducible-NOS in human glomerulonephritis—The possible source is infiltrating monocytes/ macrophages, Kidney Int. 50:392–399.PubMedGoogle Scholar
  58. Kawase, T., Oguro, A., Orikasa, M., and Burns, D. M., 1996, Characteristics of NaF-induced differentiation of HL-60 cells, J. Bone Miner. Res. 11:1676–1687.PubMedCrossRefGoogle Scholar
  59. Keller, R., Keist, R., Joller, P., and Groscurth, P., 1993, Mononuclear phagocytes from human bone marrow progenitor cells; morphology, surface phenotype, and functional properties and activated cells, Clin. Exp. Immunol. 91:176–182.PubMedGoogle Scholar
  60. Kim, C., Schinkel, C., Fuchs, D., Stadler, J., Walz, A., Zedler, S., von Donnersmarck, G. H., and Faist, E., 1995, Interleukin-13 effectively down-regulates the monocyte inflammatory potential during traumatic stress, Arch. Surg. 130:1330–1336.PubMedGoogle Scholar
  61. King, J. M., Srivastava, K. D., Stefano, G. B., Bilfinger, T. V., Bahou, W. F., and Magazine, H. I., 1997, Human monocyte adhesion is modulated by endothelin B receptor-coupled nitric oxide release, J. Immunol. 158:880–886.PubMedGoogle Scholar
  62. Kobzik, L., Bredt, D. S., Lowenstein, C. J., Drazen, J., Gaston, B., Sugarbaker, D., and Stamler, J. S., 1993, Nitric oxide synthase in human and rat lung: Immunocytochemical and histochemical localization, Am. J. Respir. Cell. Mol. Biol. 9:371–377.PubMedGoogle Scholar
  63. Koeffler, H. P., 1986, Human acute myeloid leukemia lines: Models of leukemogenesis, Semin. Hematol. 23:223–236.PubMedGoogle Scholar
  64. Kolb, J. P., Paul-Eugene, N., Damais, C., Yamaoka, K., Drapier, J.-C., and Dugas, B., 1994, Interleukin-4 stimulates cGMP production by IFN-γ-activated human monocytes. Involvement of the nitric oxide synthase pathway, J. Biol. Chem. 269:9811–9816.PubMedGoogle Scholar
  65. Kooy, N. W., Royall, J. A., Ye, Y. Z., Kelly, D. R., and Beckman, J. S., 1995, Evidence for in vivo peroxynitrite production in human acute lung injury, Am. J. Respir. Crit. Care Med. 151:1250–1254.PubMedGoogle Scholar
  66. Kumar, V., Jindal, S. K., and Ganguly, N. K., 1995, Release of reactive oxygen and n’itrogen intermediates from monocytes of patients with pulmonary tuberculosis, Scand. J. Clin. Lab Invest. 55:163–169.PubMedGoogle Scholar
  67. Laffi, G., Foschi, M., Masini, E., Simoni, A., Mugnai, L., Lavilla, G., Barletta, G., Mannaioni, P. F., and Gentilini, P., 1995, Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation, Hepatology 22:1666–1673.PubMedCrossRefGoogle Scholar
  68. Lafond-Walker, A., Chen, C. L., Augustine, S., Wu, T. C., Hruban, R. H., and Lowenstein, C. J., 1997, Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis, Am. J. Pathol. 151:919–925.PubMedGoogle Scholar
  69. Lammas, D. A., Stober, C., Harvey, C. J., Kendrick, N., Panchalingam, S., and Kumararatne, D. S., 1997, ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(p2X7) receptors, Immunity 7:433–444.PubMedCrossRefGoogle Scholar
  70. Lecoanet-Henchoz, S., Gauchat, J. F., Aubry, J. P., Graber, P., Life, P., Paul-Eugene, N., Ferrua, B., Corbi, A. L., Dugas, B., Platerzyberk, C., and Bonnefoy, J. Y., 1995, CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-Cd18 and CD11c-CD18, Immunity 3:119–125.PubMedGoogle Scholar
  71. Leibovich, S. J., Polverini, P. J., Fong, T. W., Harlow, L. A., and Koch, A. E., 1994, Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism, Proc. Natl. Acad. Sci. USA 91:4190–4194.PubMedGoogle Scholar
  72. Liu, J., Zhao, M. L., Brosnan, C. F., and Lee, S. C., 1996, Expression of type II nitric oxide synthase in primary human astrocyte and microglie: role of IL-1 beta and IL-1 receptor antagonist, J. Immunol. 157:3569–3576.PubMedGoogle Scholar
  73. Lopez-Guerrero, J. A., and Alonso, M. A., 1997, Nitric oxide production induced by herpes simplex virus type 1 does not alter the course of the infection in human monocytic cells, J. Gen. Virol. 78:1977–1980.PubMedGoogle Scholar
  74. Lopez-Guerrero, J. A., Rayet, B., Tuynder, M., Rommelaere, J., and Dinsart, C., 1997, Constitutive activation of U937 promonocytic cell clones selected for their resistance to parvovirus H-l infection, Blood 89:1642–1653.PubMedGoogle Scholar
  75. L’opez-Moratalla, N., Calleja, A., Gonzalez, A., Perez-Mediavilla, L. A., Aymerich, M. S., Burrel, M. A., and Santiago, E., 1996, Inducible nitric oxide synthase in monocytes from patients with Graves’ disease, Biochem. Biophys. Res. Commun. 226:723–729.Google Scholar
  76. Luoma, J. S., Stralin, P., Marklund, S. L., Hiltunen, T. P., Sarkioja, T., and Ylaherttuala, S., 1998, Expression of extracellular SOD and NOS2 in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions—Colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins, Arterio. Thromb. Vasc. Biol. 18:157–167.Google Scholar
  77. MacMicking, J., Xie, Q. W., and Nathan, C., 1997, Nitric oxide and macrophage function, Annu. Rev. Immunol. 15:323–350.PubMedCrossRefGoogle Scholar
  78. Magazine, H. I., Liu, Y., Bilfinger, T. V., Fricchione, G. L., and Stefano, G. B., 1996, Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in inverte-brate immunocytes and microglia are mediated by nitric oxide, J. Immunol. 156:4845–4850.PubMedGoogle Scholar
  79. Majano, P.L., Garcia-Monz’n, C., L’opez-Cabrera, M., Lara-Pezzi, E., Fern’andez-Ruiz, E., Garcia-Iglesias, C., Borque, M. J., and Moreno-Otero, R., 1998, Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation, J. Clin. Invest. 101:1343–1352.PubMedGoogle Scholar
  80. Malinski, T., Radomski, M. W., Taha, Z., and Moncada, S., 1993, Direct electrochemical measurement of nitric oxide released from human platelets, Biochem. Biophys. Res. Commun. 194:960–965.PubMedGoogle Scholar
  81. Mannick, E. E., Bravo, L. E., Zarama, G., Realpe, J. L., Zhang, X. J., Ruiz, B., Fortham, E. T., Mera, R., Miller, M. J., and Correa, P., 1996, Inducible nitric oxide synthase, nitrotyrosine, and apoptosis, in Helicobacter pylori gastritis: effects of antibiotics and antioxidants, Cancer Res. 56:3238–3243.PubMedGoogle Scholar
  82. Mannick, J. B., Asano, K., Izumi, K., Kieff, E., and Stamler J. S., 1994, Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation, Cell 79:1137–1146.PubMedCrossRefGoogle Scholar
  83. Mannick, J. B., Miao, X. Q., and Stamler, J. S., 1997, Nitric oxide inhibits Fas-induced apoptosis, J. Biol. Chem. 272:24125–24128.PubMedCrossRefGoogle Scholar
  84. Martin, J. H., and Edwards, S. W., 1993, Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing, J. Immunol. 150:3478–3486.PubMedGoogle Scholar
  85. Martin, J. H., and Edwards, S. W., 1994. Interferon-gamma enhances monocyte cytotoxicity via enhanced reactive oxygen intermediate production. Absence of an effect on macrophage cytotoxicity is due to failure to enhance reactive nitrogen intermediate production. Immunology 81:592–597.PubMedGoogle Scholar
  86. Masini, E., Mugnai, L., Foschi, M., Laffi, G., Gentilini, P., and Mannaioni, R. F., 1995, Changes in the production of nitric oxide and superoxidc by inflammatory cells in liver cirrhosis, Int. Arch. Allergy Immunol. 107:197–198.PubMedCrossRefGoogle Scholar
  87. Mautino, G., Paul-Eugene, N., Chanez, P., Vignola, A. M., Kolb, J. P., Bousquet, J., and Dugas, B., 1994, Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes, J. Leukoc. Biol. 56:15–20.PubMedGoogle Scholar
  88. McDermott, C. D., Gavita, S. M., Shennib, H., and Giaid, A., 1997, Immunohistochemical localization of nitric oxide synthase and the oxidant peroxynitrite in lung transplant recipients with obliterative bronchiolitis, Transplantation 64:270–274.PubMedGoogle Scholar
  89. McInnes, I. B., Leung, B. P., Field, M., Wei, X. Q., Huang, F.-P., Sturrock, R. D., Kinninmonth, A., Weidner, J., Mumford, R., and Liew, F. Y., 1996, Production of nitric oxide in the synovial membrane of rheumatoid and osteoarthritis patients, J. Exp. Med. 184:1519–1524.PubMedCrossRefGoogle Scholar
  90. McLachlan, J. A., Serkin, C. D., and Bakouche, O., 1996, Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity, J. Immunol. 156:328–335.PubMedGoogle Scholar
  91. Michel, T., and Feron, O., 1997, Nitric oxide synthases—Which, where, how, and why, J. Clin. Invest. 100:2146–2152.PubMedGoogle Scholar
  92. Middleton, S. J., Cuthbert, A. W., Shorthouse, M., and Hunter, J. O., 1993a, Nitric oxide affects mammalian distal colonic smooth muscle by tonic neural inhibition, Br. J. Pharmacol. 108:974–979.PubMedGoogle Scholar
  93. Middleton, S. J., Shorthouse, M., and Hunter, J. O., 1993b, Relaxation of distal colonic circular smooth muscle by nitric oxide derived from human leucocytes, Gut 34:814–817.PubMedGoogle Scholar
  94. Moilanen, E., Moilanen, T., Knowles, R., Charles, I., Kadoya, Y., al-Saffar, N., Revell, P. A., and Moncada, S., 1997, Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am. J. Pathol. 150:881–887.PubMedGoogle Scholar
  95. Moncada, S., and Higgs, A., 1993, The L-arginine-nitric oxide pathway, N.Engl. J. Med. 329:2002–2012.PubMedCrossRefGoogle Scholar
  96. Muõz-Fernãndez, M. A., Fernãndez, M. A., and Fresno, M., 1992, Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism, Immunol. Lett. 33:35–40.Google Scholar
  97. Murray, H. W., and Teitelbaum, R. F., 1992, L-Arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes, J. Infect. Dis. 165:513–517.PubMedGoogle Scholar
  98. Myatt, L., Eis, A. L. W., Brockman, D. E., Kossenjans, W., Greer, I., and Lyall, F., 1997, Inducible (type II) nitric oxide synthase in human placental villous tissue of normotensive, pre-eclamptic and intrauterine growth-restricted pregnancies, Placenta 18:261–268.PubMedGoogle Scholar
  99. Naotunne, T. S., Karunaweera, N. D., Mendis, K. N., and Carter, R., 1993, Cytokine-mediated inactivationof malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates, Immunology 78:555–562.PubMedGoogle Scholar
  100. Nathan, C. and Xie, Q.-W., 1994, Regulation ofbiosynthesis of nitric oxide, J. Biol. Chem. 269:13725–13728.PubMedGoogle Scholar
  101. Nicholson, S., Bonecini-Almeida, M. D. G., Silva, L. E., Jr., Nathan, C., Xie, Q.-W., Mumford, R., Weidner, J. R., Calaycay, J., Geng, J., Boechat, N., Linhares, C., Rom, W., and Ho, J. L., 1996, Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tubercu-losis, J. Exp. Med. 183:2293–2302.PubMedCrossRefGoogle Scholar
  102. Nozaki, Y., Hasegawa, Y., Ichiyama, S., Nakashima, I., and Shimokata, K., 1997, Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages, Infect. Immun. 65:3644–3647.PubMedGoogle Scholar
  103. Ochoa, J. B., Udekwu, A. O., Billiar, T. R., Curran, R. D., Cerra, F. B., Simmons, R. L., and Peitzman, A. B., 1991, Nitrogen oxide levels in patients after trauma and during sepsis, Ann. Surg. 214:621–626.PubMedGoogle Scholar
  104. Ochoa, J. B., Curti, B., Peitzman, A. B., Simmons, R. L., Billiar, T. R., Hoffman, R., Rault, R., Longo, D. L., Urba, W. J., and Ochoa, A. C., 1992, Increased circulating nitrogen oxides after human tumor immunotherapy: Correlation with toxic hemodynamic changes, J. Natl. Cancer Inst. 84:864–867.PubMedGoogle Scholar
  105. Padgett, E. L., and Pruett, S. B., 1992, Evaluation of nitrite production by human monocyte-derived macrophages, Biochem. Biophys. Res. Commun. 286:775–781.Google Scholar
  106. Paul-Eugene, N., Kolb, J. P., Damais, C., Yamaoka, K., and Dugas, B., 1994, Regulatory role of nitric oxide in the IL-4-induced IgE production by normal human peripheral blood mononuclear cells. Lymphokine Cytokine Res. 13:287–293.PubMedGoogle Scholar
  107. Paul-Eugene, N., Kolb, J. P., Sarfati, M., Arock, M., Ouaaz, F., Debre, P., Mossalayi, D. M., and Dugas, B., 1995a, Ligation of CD23 activates soluble guanylate cyclase in human monocytes via an L-arginine-dependent mechanism, J. Leukoc. Biol. 57:160–167.PubMedGoogle Scholar
  108. Paul-Eugene, N., Mossalayi, D., Sarfati, M., Yamaoka, K., Aubry, J. P., Bonnefoy, J. Y., Dugas, B., and Kolb, J. P., 1995b, Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes, Cell. Immunol. 163:314–318.PubMedGoogle Scholar
  109. Paul-Eugene, N., Pene, J., Bousquet, J.,and Dugas, B., 1995c, Role of cyclic nucleotides and nitric oxide in blood mononuclear cell IgE production stimulated by IL-4, Cytokine 7:64–69.PubMedGoogle Scholar
  110. Perez-Mediavilla, L. A., Lopez-Zabalza, M. J., Calonge, M., Montuenga, L., L’opez-Moratalla, N., and Santiago, E., 1995, Inducible nitric oxide synthase in human lymphomononuclear cells activated by synthetic peptides derived from extracellular matrix proteins, FEBS Lett. 357:121–124.PubMedGoogle Scholar
  111. Perez-Perez, G. I., Shepherd, V. L., Morrow, J. D., and Blaser, M. J.,1995, Activation ofhuman THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide, Infect. Immun. 63:1183–1187.Google Scholar
  112. Perkins, D. J., St. Clair, W. E., Misukonis, M. A., and Weinberg, J. B., 1998, Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-TNF-alpha monoclonal antibody (cA2), Arth. Rheum. 41:2205–2210.Google Scholar
  113. Petit, J. F., Phan-Bich, L., Lemaire, G., Martinache, C., and Lopez, M., 1993, During their differentia-tion into macrophages, human monocytes acquire cytostatic activity independent of NO and TNF alpha, Res. Immunol. 144:277–280.PubMedGoogle Scholar
  114. Pietraforte, D., Tritarelli, E., Testa, U., and Minetti, M., 1994, Gpl20 HIV envelope glycoprotein increases the production ofnitric oxide in human monocyte-derived macrophages, J. Leukoc. Biol. 55:175–182.PubMedGoogle Scholar
  115. Polack, B., Pernod, G., Barro, C., and Doussiere, J., 1997, Role of oxygen radicals in tissue factor induction by endotoxin in blood monocytes, Haemostasis 27:193–200.PubMedGoogle Scholar
  116. Radomski, M.W., Palmer, R.M., and Moncada, S., 1990, Characterization of the L-arginine:nitric oxide pathway in human platelets, Br. J. Pharmacol. 101:325–328.PubMedGoogle Scholar
  117. Rajora, N., Ceriani, G., Catania, A., Star, R. A., Murphy, M. T., and Lipton, J. M., 1996, Alpha-MSH production, receptors, and influence on neopterin in a human monocyte/macrophage cell line, J. Leukoc. Biol. 59:248–253.PubMedGoogle Scholar
  118. Reiling, N., Ulmer, A. J., Duchrow, M., Ernst, M., Flad, H.-D., and Hauschildt, S., 1994, Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages, Eur. J. Immunol. 24:1941–1944.PubMedGoogle Scholar
  119. Reiling, N., Kroncke, R., Ulmer, A. J., Gerdes, J., Flad, H.-D., and Hauschildt, S., 1996, Nitric oxide synthase-Expression of the endothelial, Ca2+/calmodulin-dependent in human B and T lymphocytes, Eur. J. Immunol. 26:511–516.PubMedGoogle Scholar
  120. Roman, V., Dugas, N., Abadie, A., Amirand, C., Zhao, H., Dugas, B., and Kolb, J. P., 1997, Characterization of a constitutive type III nitric oxide synthase in human U937 monocytic cells-Stimulation by soluble CD23, Immunology 91:643–648.PubMedCrossRefGoogle Scholar
  121. Saha, D.C., Astiz, M.E., Lin, R.Y., Rackow, E.C., and Eales, L.J., 1997, Monophosphoryl lipid A stimulated up-regulation of nitric oxide synthase and nitric oxide release by human monocytes in vitro, Immunopharmacology 37:175–184.PubMedCrossRefGoogle Scholar
  122. Sakai, N., and Milstien, S., 1993, Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages, Biochem. Biophys. Res. Commun. 193:378–383.PubMedCrossRefGoogle Scholar
  123. Sakurai, H., Kohsaka, H., Liu, M. F., Higashiyama, H., Hirata, Y., Kanno, K., Saito, I., and Miyasaka, N., 1995, Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides, J. Clin. Invest. 96:2357–2363.PubMedGoogle Scholar
  124. Salvemini, D., de Nucci, G., Gryglewski, R. J., and Vane, J. R., 1989, Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor, Proc. Natl. Acad. Sci. USA 86:6328–6332.PubMedGoogle Scholar
  125. Schmidt, H. H. H. W., Seifert, R., and Böhme, E., 1989, Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene B4, FEBS Lett. 244:357–360.PubMedCrossRefGoogle Scholar
  126. Schneemann, M., Schoedon, G., Hofer, S., Blau, N., Guerrero, L., and Schaffner, A., 1993, Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes, J. Infect. Dis. 167:1358–1363.PubMedGoogle Scholar
  127. Schneemann, M., Schoedon, G., Linscheid, P., Walter, R., Blau, N., and Schaffner, A., 1997, Nitrite generation in interleukin-4-treated human macrophage cultures does not involve the nitric oxide synthase pathway, J. Infect. Dis. 175:130–135.PubMedGoogle Scholar
  128. Seitzer, U., Scheeltoellner, D., Toellner, K. M., Reiling, N., Haas, H., Galle, J., Flad, H.-D., and Gerdes, J., 1997, Properties of multinucleated giant cellsina new in vitro model for human granuloma formation, J. Pathol. 182:99–105.PubMedCrossRefGoogle Scholar
  129. Sharara, A. I., Perkins, D. J., Misukonis, M. A., Chan, S. U., Dominitz, J. A., and Weinberg, J. B., 1997, Interferon-alpha activation of human mononuclear cells in vitro andinvivofornitricoxide synthase type 2 mRNA and protein expression. Possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-ga in vivo, J. Exp. Med. 186:1495–1502.PubMedCrossRefGoogle Scholar
  130. Sherman, M. P., Loro, M. L., Wong, V. Z., and Tashkin, D. P., 1991, Cytokine-and Pneumocystis carinii-induced L-arginine oxidation by murine and human pulmonary alveolar macrophages, J. Protozool. 38:234S–236S.PubMedGoogle Scholar
  131. Siedlar, M., Marcinkiewicz, J., and Zembala, M., 1995, MHC class I and class II determinants and some adhesion molecules are engaged in the regulation of nitric oxide production in vitro by human monocytes stimulated with colon carcinoma cells, Clin. Immunol. Immunopathol. 77:380–384.PubMedCrossRefGoogle Scholar
  132. Singer, I. I., Kawka, D. W., Scott, S., Weidner, J. R., Mumford, R. A., Riehl, T. E., and Stenson, W. F., 1996, Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease, Gastroenterology 111:871–885.PubMedCrossRefGoogle Scholar
  133. Snell, J. C., Chernyshev, O., Gilbert, D. L., and Colton, C. A., 1997, Polyribonucleotides induce nitric oxide production by human monocyte-derived macrophages, J. Leukoc. Biol. 62:369–373.PubMedGoogle Scholar
  134. Stamler, J. S., Singel, D. J., and Loscalzo, J., 1992, Biochemistry of nitric oxide and its redox-activated forms, Science 258:1898–1902.PubMedGoogle Scholar
  135. St. Clair, E. W., Wilkinson, W. E., Lang, T., Sanders, L., Misukonis, M. A., Gilkeson, G. S., Pisetsky, D. S., Granger, D. L., and Weinberg, J. B., 1996, Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients, J. Exp. Med. 184:1173–1178.PubMedGoogle Scholar
  136. Stefano, G. B., Liu, Y., and Goligorsky, M. S., 1996, Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes, J. Biol. Chem. 271:19238–19242.PubMedGoogle Scholar
  137. Steube, K. G., Teepe, D., Meyer, C., Zaborski, M., and Drexler, H. G., 1997, A model system in haematology and immunology—The human monocytic cell line Mono-Mac-1, Leuk. Res. 21:327–335.PubMedCrossRefGoogle Scholar
  138. Summersgill, J. T., Powell, L. A., Buster, B. L., Miller, R. D., and Ramirez, J. A., 1992, Killing of Legionella pneumophila by nitric oxide in gamma-interferon-activated macrophages, J. Leukoc. Biol. 52:625–629.PubMedGoogle Scholar
  139. ter Steege, J., Buurman, W., Arends, J. W., and Forget, P., 1997, Presence of inducible nitric oxide synthase, nitrotyrosine, CD68, and CD14 in the small intestine in celiac disease, Lab. Invest. 77:29–36.PubMedGoogle Scholar
  140. Thomsen, L. L., Lawton, F. G., Knowles, R. G., Beesley, J. E., Riveros-Moreno, V., and Moncado, S., 1994, Nitric oxide synthase in human gynecological cancer, Cancer Res. 54:1352–1354.PubMedGoogle Scholar
  141. Thomsen, L. L., Miles, D. W., Happerfield, L., Bobrow, L. G., Knowles, R. G., and Moncada, S., 1995, Nitric oxide synthase activity in human breast cancer, Br. J. Cancer 72:41–44.PubMedGoogle Scholar
  142. Tracey, W. R., Xue, C., Klinghofer, V., Barlow, J., Pollock, J. S., Forstermann, U., and Johns, R. A., 1994, Immunochemical detection of inducible NO synthase in human lung, Am. J. Physiol. 266:L722–L727.PubMedGoogle Scholar
  143. Tufano, M. A., Rossano, F., Catalanotti, P., Liguori, G., Marinelli, A., Baroni, A., and Marinelli, P., 1994, Properties of Yersinia enterocolitica porins: Interference with biological functions of phagocytes, nitric oxide production and selective cytokine release, Res. Microbiol. 145:297–307.PubMedCrossRefGoogle Scholar
  144. Vial, T., and Descotes, J., 1995, Immune-mediated side-effects of cytokines in humans, Toxicology 105:31–57.PubMedCrossRefGoogle Scholar
  145. Vitek, M. P., Snell, J., Dawson, H., and Colton, C. A., 1997, Modulation of nitric oxide production in human macrophages by apolipoprotein-E and amyloid-beta peptide, Biochem. Biophys. Res. Commun. 240:391–394.PubMedCrossRefGoogle Scholar
  146. Vouldoukis, I., Riverosmoreno, V., Dugas, B., Ouaaz, F., Becherel, P., Debre, P., Moncada, S., and Mossalayi, M. D., 1995, The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc-epsilon-RII/CD23 surface antigen, Proc. Natl. Acad. Sci. USA 92:7804–7808.PubMedGoogle Scholar
  147. Vouldoukis, I., Becherel, P. A., Riverosmoreno, V., Arock, M., Dasilva, O., Debre, P., Maizer, D., and Mossalayi, M. D., 1997, Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation, Eur. J. Immunol. 27:860–865.PubMedGoogle Scholar
  148. Wang, C. L., Su, M. H., Chao, T. Y., Shaio, M. F., and Yang, K. D., 1996, When do human macrophages release nitric oxide? Variable effects of certain in vitro cultural and in vivo resident conditions, Proc. Natl. Sci. Counc. Repub. China B 20:65–70.PubMedGoogle Scholar
  149. Watkins, S. C., Macaulay, W., Turner, D., Kang, R., Rubash, H. E., and Evans, C. H., 1997, Identification of inducible nitric oxidesynthase in human macrophages surrounding loosened hip prostheses. Am. J. Pathol. 150:1199–1206.PubMedGoogle Scholar
  150. Weinberg, J. B., Misukonis, M. A., Shami, P. J., Mason, S. N., Sauls, D. L., Dittman, W. A., Wood, E. R., Smith, G. K., McDonald, B., Bachus, K. E., Haney, A. F., and Granger, D. L., 1995, Human mononuclear phagocyte inducible nitric oxide synthase (NOS2). Analysis of NOS2 mRNA, NOS2 protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages, Blood 86:1184–1195.PubMedGoogle Scholar
  151. Weyand, C. M., Wagner, A. D., Bjornsson, J., and Goronzy J. J., 1996, Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis, J. Clin.Invest. 98:1642–1649.PubMedCrossRefGoogle Scholar
  152. Wickramasinghe, S. N., and Hasan, R., 1993, Possible role of macrophages in the pathogenesis of ethanol-induced bone marrow damage, Br. J. Haematol. 83:574–579.PubMedGoogle Scholar
  153. Wilcox, J. N., Subramanian, R. R., Sundell, C. L., Tracey, W. R., Pollock, J. S., Harrison, D. G., and Marsden, P. A., 1997, Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels, Arterio. Thromb. Vasc. Biol. 17:2479–2488.Google Scholar
  154. Wildhirt, S. M., Dudek, R. R., Suzuki, H., and Bing, R. J., 1995, Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction, Int. J. Cardiol 50:253–261.PubMedCrossRefGoogle Scholar
  155. Zarlingo, T. J., Eis, A.L. W., Brockman, D. E., Kossenjans, W., and Myatt, L., 1997, Comparative localisation of endothelial and inducible nitric oxide synthase isoforms in haemochorial and epitheliochorial placentae, Placenta 18:511–520.PubMedGoogle Scholar
  156. Zembala, M., Siedlar, M., Marcinkiewicz, J., and Pryjma, J., 1994, Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide, Eur. J. Immunol. 24:435–439.PubMedGoogle Scholar
  157. Zhou, A. Q., Chen, Z. F., Rummage, J. A., Jiang, H., Kolosov, M., Kolosova, I., Stewart, C. A., and Leu, R. W., 1995, Exogenous interferon-gamma induces endogenous synthesis of interferon-alpha and-beta by murine macrophages for induction of nitric oxide synthase, J. Interferon Cytokine Res. 15:897–904.PubMedCrossRefGoogle Scholar
  158. Zinetti, M., Fantuzzi, G., Delgado, R., Di Santo, E., Ghezzi, P., and Fratelli, M., 1995, Endogenous nitric oxide production by human monocytic cells regulates EPS-induced TNF production, Eur. Cytokine Network 6:45–48.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Brice Weinberg
    • 1
  1. 1.Division of Hematology and OncologyVeterans Affairs and Duke University Medical CentersDurham

Personalised recommendations