Nitric Oxide in Influenza

  • Takaaki Akaike
  • Hiroshi Maeda


Nitric Oxide Human Immunodeficiency Virus Type Influenza Virus iNOS Expression Murine Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, H., Beland, J. L., Del-Pan, N. C., Kobzik, L., Brewer, J. P., Martin, T. R., and Rimm, I. J., 1997, Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2), J. Exp. Med. 185:1533–1540.CrossRefPubMedGoogle Scholar
  2. Akaike, T., and Maeda, H., 1994, Molecular pathogenesis of influenza virus pneumonia: Impacts of proteases, kinins, and oxygen radicals derived from hosts, in: Basic and Clinical Aspects of Pulmonary Fibrosis (T. Takishima, ed.), CRC Press, Boca Raton, pp. 213–227.Google Scholar
  3. Akaike, T., Molla, A., Ando, M., Araki, S., and Maeda, H., 1989, Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice, J. Viral. 65:2252–2259.Google Scholar
  4. Akaike, T., Ando, M., Oda, T., Doi, T., Ijiri, S., Araki, S., and Maeda, H., 1990, Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice, J. Clin. Invest. 85:739–745.PubMedGoogle Scholar
  5. Akaike, T., Weihe, E., Schaefer, M., Fu. Z. F, Zheng, Y. M., Vogel, W., Schmidt, H., Koprowski, H., and Dietzschold, B., 1995, Effect of neurotropic virus infection on neuronal and mducible nitric oxide synthase activity in rat brain, J.Neurovirol. 1:118–125.PubMedCrossRefGoogle Scholar
  6. Akaike, T., Noguchi, Y., Ijiri, S., Setoguchi, K., Suga, M., Zheng, Y. M., Dietzschold, B., and Maeda, H., 1996, Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals, Proc.Natl. Acad. Sci.USA 93:2448–2453.CrossRefPubMedGoogle Scholar
  7. Akaike, T., Suga, M., and Maeda, H., 1998, Free radicals in viral pathogenesis: Molecular mechanisms involving superoxide and NO, Proc. Soc. Exp. Biol. Med. 217:64–73.PubMedGoogle Scholar
  8. Amaya, Y, Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T., 1990, Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type, J. Biol. Chem. 265:14170–14175.PubMedGoogle Scholar
  9. Beckman, J. S., and Koppenol, W. H., 1996, Nitric oxide, superoxide and peroxynitrite: The good, the bad, and the ugly, Am. J. Physiol. 271:CI424–C1437.Google Scholar
  10. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide, Proc.Natl. Acad. Sci. USA 87:1620–1624.PubMedGoogle Scholar
  11. Beckman, J. S., Ye, Y. Z., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., and White, C. R., 1994, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry, Biol. Chem. Hoppe Seyler 375:81–88.Google Scholar
  12. Berlett, B. S., Friguet, B., Yim, M. B., Chock, P. B., and Stadtman, E. R., 1996, Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: Relevance to signal transduction, Proc. Natl. Acad. Sci. USA 93:1776–1780.CrossRefPubMedGoogle Scholar
  13. Bi, Z., Barna, M., Komatsu, T., and Reiss, C. S., 1995, Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity, J. Virol. 69:6466–6472.PubMedGoogle Scholar
  14. Bogdan, C., Vodovotz, Y., Paik, J., Xie, Q., and Nathan, C., 1994, Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages, J. Leukoc. Biol. 55:227–233.PubMedGoogle Scholar
  15. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A., 1995, Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures, Proc. Natl. Acad. Sci. USA 92:7162–7166.PubMedGoogle Scholar
  16. Bukrinsky, M. I., Nottet, H. S. L. M., Schmidtmayerova, H., Dubrovsky, L., Flanagan, C. R., Mullins, M. E., Lipton, S. A., and Gendelman, H. E., 1995, Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HSV-l)-infected monocytes: Implications for HIV-associated neurological disease, J. Exp. Med. 181:735–745.CrossRefPubMedGoogle Scholar
  17. Campbell, I. L., Samimi, A., and Chiang, C.-S., 1994, Expression of the inducible nitric oxide synthase. Correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis, J. Immunol. 153:3622–3629.PubMedGoogle Scholar
  18. Castro, L., Rodriguez, M., and Radi, R., 1994, Aconitase is readily inactivated by peroxymtrite, but not by its precursor, nitric oxide, J. Biol. Chem. 269:29409–29415.PubMedGoogle Scholar
  19. Cleeter, M. W. J., Cooper, J. M., Darley-Usmar, V. M., Moncada, S., and Schapiva, A. H. V, 1994, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases, FEBS Lett. 345:50–54.CrossRefPubMedGoogle Scholar
  20. Corraliza, I. M., Soler, G., Eichmann, K., and Modolell, M., 1995, Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone marrow-derived macrophages, Biochem. Biophys. Res. Commun. 206:667–673.CrossRefPubMedGoogle Scholar
  21. Croen, K. D., 1993, Evidence for an antiviral effect of nitric oxide. Inhibition of herpes simplex virus type I replication, J. Clin. Invest. 91:2446–2452.PubMedGoogle Scholar
  22. Cunha, F. Q., Moncada, S., and Liew, F. Y., 1992, Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-γ in murine macrophages, Biochem. Biophys. Res. Commun. 182:1155–1159.CrossRefPubMedGoogle Scholar
  23. Dawson, V. L., Dawson, T. M., Uhl, G. R., and Snyder, S. H., 1993, Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures, Proc. Natl. Acad. Sci. USA 90:3256–3259.PubMedGoogle Scholar
  24. Doi, T., Ando, M., Akaike, T., Suga, M., Sato, K., and Maeda, H., 1993, Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis, Infect. Immun. 61:1980–1989.PubMedGoogle Scholar
  25. Doi, K., Akaike, T., Horie, H., Noguchi, Y., Fujii, S., Beppu, T., Ogawa, M., and Maeda, H., 1996, Excessive production of nitric oxide in rat solid tumor and its implications in rapid tumor growth, Cancer (Suppl.) 77:1598–1604.Google Scholar
  26. Douglas, R. G., Jr., 1975, Influenza in man, in: The Influenza Viruses and Influenza (E. D. Kilboume, ed.), Academic Press, New York, pp. 395–147.Google Scholar
  27. Estevez, A. G., Radi, R., Barbeito, L., Shin, J. T., Thompson, J. A., and Beckman, J. S., 1995, Peroxynitrite-induced cytotoxicity in PC 12 cells: Evidence for an apoptotic mechanism differentially modulated by neurotrophic factors, J. Neurochem. 65:1543–1550.PubMedGoogle Scholar
  28. Frears, E. R., Zhang, Z., Blake, D. R., O’Connell, J. P., and Winyard, P. G.,1996, Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite, FEBS Lett. 381:21–24.Google Scholar
  29. Fujii, S., Akaike, T., and Maeda, H., 1999, Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats, Virology (in press).Google Scholar
  30. Garrett, R. H., and Grisham, C. M., 1995, Water, pH, and ionic equilibria, in: Biochemistry, Saunders College Publishing, Fort Worth, pp. 32–54.Google Scholar
  31. Gotoh, T., Sonoki, T., Nagasaki, A., Terada, K., Takiguchi, M., and Mori, M., 1996, Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line, FEBS Lett. 395:119–122.CrossRefPubMedGoogle Scholar
  32. Granger, D. L., Hibbs, J. B., Jr., Perfect, J. R., and Durack, D. T., 1988, Specific amino acid (l-arginine) requirement for microbiostatic activity of murine macrophages, J. Clin. Invest. 81:1129–1136.PubMedGoogle Scholar
  33. Haddad, I. Y., Ischiropoulos, B., Holm, B. A., Beckman, J. S., Baker, J. R., and Matalon, S., 1993, Mechanism of peroxynitrite-induccd injury to pulmonary surfactant, Am. J. Physiol. 265:L555–L564.PubMedGoogle Scholar
  34. Haddad, I. Y., Pataki, G., Hu, P., Galliani, C., Beckman, J. S., and Matalon, S., 1994, Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury, J. Clin. Invest. 94:2407–2413.PubMedGoogle Scholar
  35. Halliwell, B., and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and diseases, Biochem. J. 219:1–14.PubMedGoogle Scholar
  36. Hausladen, A., and Fridovich, I., 1994, Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not, J. Biol. Chem. 269:29405–29408.PubMedGoogle Scholar
  37. Hennet, T., Peterhans, E., and Stocker, R., 1992, Alterations in antioxidant defences in lung and liver of miceinfectedwithinfluenza A virus, J. Gen. Virol. 73:39–46.PubMedCrossRefGoogle Scholar
  38. Henry, Y. A., Guissani, A., and Ducastel, B., 1997, Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds, Molecular Biology Intelligence Unit, R. G. Landes Company, Austin.Google Scholar
  39. Huie, R. E., and Padmaja, S., 1993, The reaction rate of nitric oxide with superoxide, Free Radical Res. Commun. 18:195–199.CrossRefGoogle Scholar
  40. Ikeda, T., Shimokata, K., Daikoku, T., Fukatsu, T., Tsutsui, Y., and Nishiyama, Y., 1993, Pathogenesis of cytomegalovirus-associated pneumonitis in ICR mice: Possible involvement of superoxide radicals, Arch. Virol. 127:11–24.Google Scholar
  41. Ischiropoulos, H., Al-Mehdi, A., and Fisher, A. B., 1995, Reactive species in ischemic rat lung injury: Contribution of peroxynitrite, Am. J. Physiol. 269:L158–L164.PubMedGoogle Scholar
  42. James, S. L., 1995, Role of nitric oxide in parasitic infections, Microbiol. Rev. 59:533–547.PubMedGoogle Scholar
  43. Karupiah, G., Xie, Q., Buller, R. M. L., Nathan, C., Duarte, C., and MacMicking, J. D., 1993, Inhibition of viral replication by interferon-γ-induced nitrie oxide synthase, Science 261:1445–1448.PubMedGoogle Scholar
  44. Kojima, Y., Akaike, T., Sato, K., Maeda, H., and Hirano, T., 1996, Polymer conjugation to Cu,Zn-SOD and suppression of hydroxyl radical generation on exposure to H2O2 Improved stability of SOD in vitro and in vivo, J. Bioact. Compat. Polymers 11:169–190.Google Scholar
  45. Kong, S. K., Yim, M. B., Stadtman, E. R., and Chock, P. B., 1996, Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylatenitrated cde2(6–20)NH2 peptide. Proc. Natl. Acad. Sci. USA 93:3377–3382.CrossRefPubMedGoogle Scholar
  46. Koprowski, H., Zheng, Y. M., Heber-Katz, E., Fraser, N., Rorke, L., Fu, Z. F., Hanlon, C., and Dietzschold, B., 1993, In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases, Proc. Natl. Acad. Sci. USA 90:3024–3027.PubMedGoogle Scholar
  47. Kornellisse, R. F., Hoekman, K., Visser, J. J., Hop, W. C. J., Huijmans, J. G. M., van der Straaten, P. J. C., van der Heijden, A. J., Sukhai, R. N., Neijens, H. J., and de Groot, R., 1996, The role of nitric oxide inbacterialmeningitis in children, J. Infect. Dis. 174:120–126.Google Scholar
  48. Kosaka, H., Sawai, Y., Sakaguchi, H., Kumura, E., Harada, N., Watanabe, M., and Shiga, T., 1994, ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats, Am. J. Physiol. 266:C1400–C1405.PubMedGoogle Scholar
  49. Kreil, T. R., and Eibl, M. M., 1995, Viral infection of macrophages profoundly alters requirements for induction of nitric oxidesynthesis, Virology 212:174–178.CrossRefPubMedGoogle Scholar
  50. Kreil, T. R., and Eibl, M. M., 1996, Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence tor contribution to pathogenesis in experimental infection in vivo, Virology 219:304–306.CrossRefPubMedGoogle Scholar
  51. Landino, L. M., Crews, B. C., Timmons, M. D., Morrow, J. D., and Marnett, L. J., 1996, Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis, Proc. Natl. Acad. Sci. USA 93:15069–15074.CrossRefPubMedGoogle Scholar
  52. Lane, T. E., Paoletti, A. D., and Buchmeier, M. J., 1997, Dissociation between the in vitro and in vivo effects of nitric oxide on a neurotropic coronavirus, J. Virol. 71:2202–2210.PubMedGoogle Scholar
  53. Lepoivre, M., Fieschi, F., Coves, J., Thelander, L., and Fontecave, M., 1991, Inactivation of ribonucleotide reductase by nitric oxide, Biochem. Biophys. Res. Commun. 179:442–448.CrossRefPubMedGoogle Scholar
  54. Liu, R. H., and Hotchkiss, J. H., 1995, Potential genotoxicity of chronically elevated nitric oxide: A review, Mutat. Res. 339:73–89.PubMedGoogle Scholar
  55. Maeda, H., and Akaike, T., 1991, Oxygen free radicals as pathogenic molecules in viral diseases, Proc. Sac. Exp. Biol. Med. 198:721–727.Google Scholar
  56. Mannick, J. B., Asano, K., Izumi, K., Kieff, E., and Stamler, J. S., 1994, Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation, Cell 79:1137–1146.CrossRefPubMedGoogle Scholar
  57. Matsumoto, H., and Sies, H., 1996, The reaction of ebselen with peroxynitrite, Chem. Res. Toxicol. 9:262–267.Google Scholar
  58. Mikami, S., Kawashima, S., Kanazawa, K., Hirata, K., Katayama, Y., Hotta, H., Hayashi, Y., Ito, H., and Yokoyama, M., 1996, Expression of nitric oxide synthase in a murine model of viral myocarditis induced by coxsackie virus B3, Biochem. Biophys. Res. Commun. 220:983–989.CrossRefPubMedGoogle Scholar
  59. Moncada, S., and Higgs, A., 1993, The L-arginine-nitric oxide pathway, N. Engl. J. Med. 329:2002–2012.CrossRefPubMedGoogle Scholar
  60. Mordvintcev, P., Mülsh, A., Busse, R., and Vanin, A.,1991, On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal. Biochem. 199:142–146.Google Scholar
  61. Moreno, J. J., and Pryor, W., 1992, Inactivation of α1-proteinase inhibitor by peroxynitrite, Chem. Res. Toxicol. 5:425–431.PubMedGoogle Scholar
  62. Murphy, B. R., and Webster, R. G., 1990, Orthomyxoviruses, in: Virology, Volume 2, 2nd ed. (B. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsh, J. L. Melnick, T. P. Monath, and B. Roizman, eds.), Raven Press, New York, pp. 1091–1152.Google Scholar
  63. Nathan, C. F., and Hibbs, J. B., 1991, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol. 3:65–70.CrossRefPubMedGoogle Scholar
  64. Oda, T., Akaike, T., Hamamoto, T., Suzuki, F., Hirano, T., and Maeda, H., 1989, Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD, Science 244:974–976.PubMedGoogle Scholar
  65. Ohshima, H., and Bartsch, H., 1994, Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitricoxide in carcinogenesis, Mutat. Res. 305:253–264.PubMedGoogle Scholar
  66. Okamoto, T., Akaike, T., Suga, M., Tanase, S., Horie, H., Miyajima, S., Ando, M., Ichinose, Y., and Maeda, H., 1997a, Activation of human matrix metalloproteinases by various bacterial proteinases, J. Biol. Chem. 272:6059–6066.PubMedGoogle Scholar
  67. Okamoto, T., Akaike, T., Nagano, T., Miyajima, S., Suga, M., Ando, M., Ichimori, K., and Maeda, H., 1997b, Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: A novel mechanism of procollagenase activation involving nitric oxide, Arch. Biochem. Biophys. 342:261–274.CrossRefPubMedGoogle Scholar
  68. Pryor, W. A., and Squadrito, G. L., 1995, The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide, Am. J. Physiol. 268:L699–L722.PubMedGoogle Scholar
  69. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991a, Peroxynitrite oxidation of sulfhydryls, J. Biol. Chem. 266:4244–4250.PubMedGoogle Scholar
  70. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991b, Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys. 288:481–487.PubMedGoogle Scholar
  71. Radi, R., Rodriguez, M., Castro, L., and Telleri, R., 1994, Inhibition of mitochondrial electron transport by peroxynitrite, Arch. Biochem. Biophys. 308:89–95.CrossRefPubMedGoogle Scholar
  72. Rubbo, H., Darley-Usmar, V., and Freeman, B. A., 1996, Nitric oxide regulation of tissue free radical injury, Chem. Res. Toxicol. 9:809–820.CrossRefPubMedGoogle Scholar
  73. Sato, K., Akaike, T., Kohno, M., Ando, M., and Maeda, H., 1992, Hydroxyl radical production by H2O2 plus Cu,Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme, J. Biol. Chem. 267:25371–25377.PubMedGoogle Scholar
  74. Sato, K., Suga, M., Akaike, T., Fujii, S., Muranaka, H., Doi, T., and Maeda, H., 1998, Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice, Am. J Respir. Crit. Care Med. 157:853–857.PubMedGoogle Scholar
  75. Schwartz, K. B., 1993, Oxidative stress during viral infection: A review, Free Radical Biol. Med. 21:641–649.Google Scholar
  76. Setoguchi, K., Takeya, M., Akaike, T., Suga, M., Hattori, R., Maeda, H., Ando, M., and Takahashi, K., 1996, Expression of induciblc nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats, Am. J. Pathol. 149:2005–2022.PubMedGoogle Scholar
  77. Sharara, A. I., Perkins, D. J., Misukonis, M. A., Chan, S. U., Dominitz, J. A., and Weinbcrg, J. B., 1997, Interferon-alpha activation of human mononuclear cells in vitro and in vivo for nitric oxide synthase type 2 mRNA and protein expression. Possible relationship of induced NOS2 to the anti-hepatitis C effects of II N-α in vitro. J. Exp. Med. 186:1495–1502.CrossRefPubMedGoogle Scholar
  78. Sidwell, R. W., Huffman, J. H., Bailey, K. W., Wong, M. H., Nimrod, A., and Panet, A., 1996, Inhibitory effects of recombinant manganese superoxide dismutase on influenza virus infections in mice, Antimicrob. Agents Chemother. 40:2626–2631.PubMedGoogle Scholar
  79. Sonoki, T., Nagasaki, A., Gotoh, T., Takiguchi, M., Takeya, M., Matsuzaki, H., and Mori, M., 1997, Coinduction of nitric oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide, J. Biol. Chem. 272:3689–3693.PubMedGoogle Scholar
  80. Troy, C. M., Derossi, D., Prochiantz, A., Greene, L. A., and Shelanski, M. L., 1996, Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway, J. Neurosci. 16:253–261.PubMedGoogle Scholar
  81. Umezawa, K., Ohnishi, N., Tanaka, K., Kamiya, S., Koga, Y., Nakazawa, H., and Ozawa, A., 1995, Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes, Infect. Immun. 63:4402–4408.PubMedGoogle Scholar
  82. Umezawa, K., Akaike, T., Fujii, S., Suga, M., Setoguchi, K., Ozawa, A., and Maeda, H., 1997, Induction of nitric oxide synthesis and xanthine oxidase and their role in the antimicrobial mechanism against Salmonella typhimurium in mice, Infect. Immun. 65:2932–2940.PubMedGoogle Scholar
  83. Uppu, R. M., Squadrito, G. L., and Pryor, W., 1996, Acceleration of peroxynitrite oxidations by carbon dioxide, Arch. Biochem. Biophys. 327:335–343.CrossRefPubMedGoogle Scholar
  84. Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q., and Nathan, C., 1993, Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β, J. Exp.Med. 178:605–613.CrossRefPubMedGoogle Scholar
  85. Whiteman, M., Tritschler, H., and Halliwell, B., 1996, Protection against peroxynitrite-dependent tyrosine nitration and α1-antiproteinase inactivation by oxidized and reduced lipoic acid, FEBS Lett. 379:74–76.CrossRefPubMedGoogle Scholar
  86. Wright, P. F., 1997, Respiratory diseases, in: Viral Pathogenesis (N. Nathanson, R. Ahmed, F. Gonzalez-Scarano, D. E. Griffin, K. V Holmes, F. A. Murphy, and H. L. Robinson, eds.), Lippincott-Raven Publishers, Philadelphia, pp. 703–711.Google Scholar
  87. Xia, Y., and Zweier, J. L., 1997, Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages, Proc. Natl. Acad. Sci. USA 94:6954–6958.PubMedGoogle Scholar
  88. Yermilov, V., Yoshie, Y., Rubio, J., and Ohshima, H., 1996, Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite, FEBS Lett. 399:67–70.CrossRefPubMedGoogle Scholar
  89. Yoshida, M., Akaike, T., Wada, Y., Sato, K., Ikeda, K., Ueda, S., and Maeda, H., 1994, Therapeutic effect of imidazolineoxyl N-oxide against endotoxin shockthrough its direct nitric oxide-scavenging activity, Biochem. Biophys. Res. Commun. 202:923–930.CrossRefPubMedGoogle Scholar
  90. Yoshimura, T., Yokoyama, H., Fuji, S., Takayama, F., Oikawa, K., and Kamada, H., 1996, In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice, Nature Biotechnol. 14:992–994.CrossRefGoogle Scholar
  91. Zhang, X., Alley, E. W., Russell, S. W., and Morrison, D. C., 1994, Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. Infect. Immun. 62:33–40.PubMedGoogle Scholar
  92. Zheng, Y. M., Schöfer, M. K. H., Weihe, E., Sheng, H., Corisdeo, S., Fu, Z. F., Koprowski, H., and Dietzschold, B., 1993, Severity of neurological signs and degree of inflammatory lesions in the brains of the rats with Borna disease correlate with the induction of nitric oxide synthase, J. Virol. 67:5786–5791.PubMedGoogle Scholar
  93. Zhou, A., Chen, Z., Rummage, J. A., Jiang, H., Kolosov, M., Stewart, C. A., and Leu, R. W., 1995, Exogenous interferon-gamma induces endogenous synthesis of interferon-alpha and-beta by murine macrophages for induction of nitric oxide synthase, J. Interferon Cytokine Res. 15:897–904.PubMedCrossRefGoogle Scholar
  94. Zhu, L., Gunn, C., and Beckman, J. S., 1992, Bactericidal activity of peroxynitrite, Arch. Biochem. Biophys. 298:452–457.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Takaaki Akaike
    • 1
  • Hiroshi Maeda
    • 1
  1. 1.Department of MicrobiologyKumamoto University School of MedicineKumamotoJapan

Personalised recommendations