The Siberian Hamster as a Model for Study of the Mammalian Photoperiodic Mechanism

  • Bruce D. Goldman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 460)


Pineal Gland Syrian Hamster Circadian System Short Photoperiod Photoperiodic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badura, L.L. and Goldman, B.D. Central sites mediating reproductive responses to melatonin in juvenile male Siberian hamsters. Bruin Res 598:98–106,1992.Google Scholar
  2. 2.
    Bartness, T.J., Goldman, B.D., and Bittman E.L. SCN lesions block the reception of melatonin daylength signals in Siberian hamsters. Am J Physiol 260:R102–R112, 1990.Google Scholar
  3. 3.
    Bittman, E.L. The sites and consequences of melatonin binding in mammals. Am Zool 33:200–211, 1993.Google Scholar
  4. 4.
    Bittman, E.L. and Karsch, F.J. Nightly duration of pineal melatonin determines the reproductive response to inhibitory day length in ewe. Biol Reprod 30:585–593, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Brackmann, M. and Hoffmann, K. Pinealectomy and photoperiod influence testicular development in the Djungarian hamster. Naturwissenschaften 64:341, 1977.PubMedGoogle Scholar
  6. 6.
    Carter, D.S. and Goldman, B.D. Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology 113:1261–1267, 1983a.PubMedGoogle Scholar
  7. 7.
    Carter, D.S. and Goldman, B.D. Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): Mediation by melatonin. Endocrinology 113:1268–1273, 1983b.PubMedGoogle Scholar
  8. 8.
    Carlson, L.L., Weaver, D.R., and Reppert, S.M. Melatonin receptors and signal transduction during development in Siberian hamsters (Phodopus sungorus). Dev Bruin Res 59:83–88, 1991.Google Scholar
  9. 9.
    Cassone, V.M., Wade, W.S., Brooks, D.S., and Lu, J. Melatonin, the pineal gland, and circadian rhythms. J Biol Rhythms 8:S73–S81, 1993.PubMedGoogle Scholar
  10. 10.
    Darrow, J.M. and Goldman, B.D. Circadian regulation of pineal melatonin and reproduction in the Djungarian hamster. J Biol Rhythms 1:39–54,1986.Google Scholar
  11. 11.
    Duncan, M.J., Takahashi, J.S., and Dubocovich, M.L. Characteristics and autoradiographic localization of 1-[125] iodomelatonin binding sites in Djungarian hamster brain. Endocrinology 125:1011–1018, 1989.PubMedGoogle Scholar
  12. 12.
    Elliott, J.A. Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339–2346, 1976.PubMedGoogle Scholar
  13. 13.
    Elliott, J.A., Bartness, T.J., and Goldman, B.D. Effect of melatonin infusion duration and frequency on gonad, lipid, and body mass in pinealectomized male Siberian hamsters. J Biol Rhythms 4:439–455, 1989.PubMedGoogle Scholar
  14. 14.
    Freeman, D.A. and Goldman, B.D. Evidence that the circadian system mediates photoperiodic non-responsiveness in Siberian hamsters: The effect of running wheel access on photoperiodic responsiveness. J Bioi Rhythms 12:100–109, 1997a.Google Scholar
  15. 15.
    Freeman, D.A. and Goldman, B.D. Photoperiod nonresponsive Siberian hamsters: Effect of age on the probability of nonresponsiveness. J Bioi Rhythms 12:110–121, 1997b.Google Scholar
  16. 16.
    Goldman, B.D., Darrow, J.M., and Yogev, L. Effects of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology 114:2074–2083, 1984.PubMedGoogle Scholar
  17. 17.
    Goldman, B.D. and Elliott, J.A. Photoperiodism and seasonality in hamsters: Role of the pineal gland. In: Processing of Environmental Information in Vertebrates, MH Stetson (ed.), Springer-Verlag, New York,pp. 203–218,1988.Google Scholar
  18. 18.
    Gorman, M.R. and Zucker, I. Seasonal adaptations of Siberian hamsters. II. Pattern of change in day length controls annual testicular and body weight rhythms. Biol Reprod 53:116–125, 1995.PubMedGoogle Scholar
  19. 19.
    Gorman, M.R. and Zucker, I. Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. Am J Physiol 272:R887–R895, 1997.PubMedGoogle Scholar
  20. 20.
    Grosse, J., Maywood, E.S., Ebling, F.J.P., and Hastings, M.H. Testicular regression in pinealectomized Syrian hamsters following infusions of melatonin delivered on non-circadian schedules. Biol Reprod 49:666–474, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Heldmaier, G. and Steinlechner, S. Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270, 1981.CrossRefGoogle Scholar
  22. 22.
    Hoffmann, K. The influence of photoperiod and melatonin on testis size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J Comp Physiol 95:267, 1973.Google Scholar
  23. 23.
    Hoffmann, K. Testicular involution in short photoperiods inhibited by melatonin. Naturwissenschaften 61:364, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffmann, K. Effect of short photoperiods on puberty, growth and moult in the Djungarian hamster (Phodopus sungorus). J Reprod Fertil 54:29, 1978.PubMedGoogle Scholar
  25. 25.
    Hoffmann, K. and Kuderling, I. Antigonadal effects of melatonin in pinealectomized Djungarian hamsters Naturwissenschaften 64:339–340, 1977.PubMedGoogle Scholar
  26. 26.
    Horton, T.H. Growth and reproductive development of male Microtus montanus is affected by the prenatal photoperiod. Biol Reprod 31:499–504, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Illnerova, H. and Vanecek, J. Two-oscillator structure of the pacemaker controlling the circadian rhythm of N-acetyltransferase in the rat pineal gland. J Comp Physiol A 145:539–548, 1982.Google Scholar
  28. 28.
    Kirsch, R., Beignaoui, S., Gourmelen, S., and Pevet, P. Daily melatonin infusion entrains free-running activity in Syrian and Siberian hamsters. In: Light and Biological Rhythms in Man, L Wetterberg (ed.), Pergamon Press, pp. 107–120, 1993.Google Scholar
  29. 29.
    Lewy, A.J., Ahmed, S., and Sack, R.L. Phase shifting the human circadian clock using melatonin. Behav Brain Res 73:131–134, 1995.CrossRefGoogle Scholar
  30. 30.
    Maywood, E.S., Buttery, R.C., Vance, G.H.S., Herbert, J., and Hastings, M.H. Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei. Biol Reprod 43:174–182, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Maywood, E.S., Grosse, J., Lindsay, J., Karp, J.D., Powers, J.B., Ebling, F.J.P., Herbert, J., and Hastings, M.H. The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. J Neuroendocrinol 4:37–43, 1992.Google Scholar
  32. 32.
    McArthur, A.J., Gillette, M.U., and Prosser, R.A. Melatonin directly resets the rat suprachiasmatic clock in vitro. Brain Res 565:158–161, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Redman, J., Armstrong, S., and Ng, K.T. Free-running activity rhythms in the rat: Entrainment by melatonin. Science 219:1089–1091, 1982.Google Scholar
  34. 34.
    Reiter, R.J., Vaughan, M.K., Blask, D.E., and Johnson, L.Y. Melatonin: its inhibition of pineal antigonadotrophic activity in male hamsters. Science 185:1169–1171, 1974.PubMedGoogle Scholar
  35. 35.
    Sack, R.L. and Lewy, A.J. Melatonin as a chronobiotic: Treatment of circadian desynchrony in night workers and the blind. J Biol Rhythms 112 (6):595–603, 1997.Google Scholar
  36. 36.
    Shaw, D. and Goldman, B.D. Influence of prenatal and postnatal photoperiods on postnatal testis development in the Siberian hamster (Phodopus sungorus). Biol Reprod 52:833–838, 1995a.PubMedCrossRefGoogle Scholar
  37. 37.
    Shaw, D. and Goldman, B.D. Influence of prenatal photoperiods on postnatal reproductive responses to daily infusions of melatonin in the Siberian hamster (Phodopus sungorus). Endocrinology 136:4231–4236, 1995b.PubMedGoogle Scholar
  38. 38.
    Shaw, D. and Goldman, B.D. Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster (Phodopus sungorus). Endocrinology 136:4237–4246, 1995c.PubMedGoogle Scholar
  39. 39.
    Stetson, M.H., Elliott, J.A., and Goldman, B.D. Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters (Phodopus sungorus sungorus). Biol Reprod 34:664–669, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Stetson, M.H. and Watson-Whitmyre, M. Effects of exogenous and endogenous melatonin on gonadal function in hamsters. J Neural Transmission 21:55–80, 1986.Google Scholar
  41. 41.
    Stirland, J.A., Hastings, M.H., Loudon, A.S.I., and Maywood, E.S. The tau mutation in the Syrian hamster alters the photoperiodic responsiveness of the gonadal axis to melatonin signal frequency. Endocrinology 137:2183–2186,1996.PubMedCrossRefGoogle Scholar
  42. 42.
    Tamarkin, L., Westrom, W.K., Hamill, A.I., and Goldman, B.D. Effect of melatonin on the reproductive systems of male and female hamsters: a diurnal rhythm in sensitivity to melatonin. Endocrinology 99:1534–1541, 1976.PubMedGoogle Scholar
  43. 43.
    Tamarkin, L., Hollister, C.W., Lefebvre, N.G., and Goldman, B.D. Melatonin induction of gonadal quiescence in pinealectomized hamsters. Science 198:953–955, 1977a.PubMedGoogle Scholar
  44. 44.
    Tamarkin, L., Lefebvre, N.G., Hollister, C.W., and Goldman, B.D. Effect of melatonin administered during the night on reproductive function in the Syrian hamster. Endocrinology 101:631–634, 1977b.PubMedCrossRefGoogle Scholar
  45. 45.
    Turek, F.W., Desjardins, C., and Menaker, M. Melatonin antigonadal and progonadal effects in male golden hamsters. Science 190:280–282, 1975.PubMedGoogle Scholar
  46. 46.
    Underwood, H. and Goldman, B.D. Vertebrate circadian and photoperiodic systems: Role of the pineal gland and melatonin. J Biol Rhythms 2:279–315, 1987.PubMedGoogle Scholar
  47. 47.
    Wayne, N.L., Malpaux, B., and Karsch, F.J. How does melatonin code for day length in the ewe: Duration of nocturnal melatonin release or coincidence of melatonin with a light-entrained sensitive period. Biol Reprod 39:66–75, 1988.PubMedCrossRefGoogle Scholar
  48. 48.
    Weaver, D.R. and Reppert, S.M. Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology 119:2861–2863, 1986.PubMedGoogle Scholar
  49. 49.
    Yellon, S.M. and Goldman, B.D. Photoperiod control of reproductive development in the male Djungarian hamster (Phodopus sungorus) Endocrinology 114:664–670, 1984.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Bruce D. Goldman
    • 1
  1. 1.Department of Physiology and NeurobiologyUniversity of ConnecticutStorrs

Personalised recommendations