Applications of the Polymerase Chain Reaction

  • Danny L. Wiedbrauk
  • Richrad L. Hodinka
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Human Immunodeficiency Virus Type Infectious Agent Chlamydia Trachomatis Pelvic Inflammatory Disease Polymerase Chain Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N., 1985, Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 30: 1350–1354.Google Scholar
  2. 2.
    Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H., 1986, Specific enzymatic amplification of DNA in Vitro: The polymerase chain reaction, Cold Spring Harbor Symp Quant Biol. 51: 263–273.Google Scholar
  3. 3.
    Mullis, K. B. and Faloona, F. A., 1987, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol. 155: 335–350.Google Scholar
  4. 4.
    Wagar, E. A., 1996, Direct hybridization and amplification applications for the diagnosis of infectious diseases, ℑ. Clin. Lob. Anal. 10: 312–325Google Scholar
  5. 5.
    Whelen, A. C. and Persing, D. H., 1996, The role of nucleic acid amplification and detection in the clinical microbiology laboratory, Ann. Rev. Microbiol. 50: 349–373.Google Scholar
  6. 6.
    Engleberg, N. C., 1994, Molecular methods: Applications for clinical infectious diseases, Ann. Emer. Med. 24: 490–502.Google Scholar
  7. 7.
    Centers for Disease Control and Prevention, 1993, Recommendations for the prevention and management of Chlamydia trachomatis infections, Morbid. Mortal. Weekly Rep. 42 (RR-12): 1–39.Google Scholar
  8. 8.
    McCabe, R. E. and Remington, J. S., 1990, Toxoplasma gondii, in: Principles and Practice of Infectious Diseases, 3rd ed. (G. L. Mandell, R. G. J. Douglas, and J. E. Bennett, eds.), Churchill Livingstone, New York, pp. 2090–2103.Google Scholar
  9. 9.
    Lemon, S. M. and Brown, E. A., 1995, Hepatitis C virus, in: Principles and Practice of Infectious Diseases, 4th ed. (G. L. Mandell, J. E. Bennett, and R. Dolan, eds.), Churchill Livingston, New York, pp. 1474–1486.Google Scholar
  10. 10.
    Young, K. K., Resnick, R. M., and Myers, T. W., 1993, Detection of hepatitis C virus RNA by a combined reverse transcription-polymerase chain reaction assay, ℑ. Clin. Microbiol. 31: 882–886.Google Scholar
  11. 11.
    Relman, D. A., 1993, The identification of uncultured microbial pathogens, ℑ. Infect. Dis. 168: 1–8.Google Scholar
  12. 12.
    Gao, S.-J. and Moore, P. S., 1996, Molecular approaches to the identification of unculturable infectious agents, Emerging Infect. Dis. 2: 159–167.Google Scholar
  13. 13.
    Centers for Disease Control and Prevention, 1996, Nucleic acid amplification tests for tuberculosis, Morbid. Mortal. Weekly Rep. 45 (43): 950–952.Google Scholar
  14. 14.
    Harding, L. and Liberman, D. F., 1995, Epidemiology of laboratory-associated infections, in: Laboratory Safety: Principles and Practice, 2nd ed. (D. O. Flemming, J. H. Richardson, J. J. Tulis, and D. Vesley, eds.), American Society for Microbiology Press, Washington, DC, pp. 7–15.Google Scholar
  15. 15.
    Collins, C. H., 1993, Laboratoy-Acquired Infections, 3rd ed. Butterworth-Heinemann, Boston, MA.Google Scholar
  16. 16.
    Wedum, A. G., 1964, Laboratory safety in research with infectious aerosols, Public Health Rep. (U.S.) 79: 619–633.Google Scholar
  17. 17.
    Kaul, K.., Luke, S., McGurn, C., Snowden, N., Monti, C., and Fry, W. A., 1996, Amplification of residual DNA sequences in sterile bronchoscopes leading to false-positive PCR results, ℑ. Clin. Microbiol. 34: 1949–1951.Google Scholar
  18. 18.
    Jackson, J. B., MacDonald, K. L., Cadwell, J., Sullivan, C., Kline, W. E., Hanson, M., Sannerud, K. J., Stramer S. L., Fildes, N. J., Kwok, S. Y., Sninsky, J. J., Bowman, R. J., Polesky, H. F., Balfour, H. H., and Osterholm, M. T., 1990, Absence of HIV’ infection in blood donors with indeterminate Western blot tests for antibody to HIV-1, N Eng. ℑ. Med. 322: 217–222.Google Scholar
  19. 19.
    Kwok, S., Lipka, J. J., McKinney, N., Kellogg, D. E., Poiesz, B., Foung, S. K. H.; and Sninsky, J. J., 1990, Low incidence of HTLV infections in random blood donors with indeterminate Western blot patterns, Transfusion 30: 491–494.Google Scholar
  20. 20.
    Schleupner, C. J., 1995, Detection of HIV-1 infection, in: Principles and Practice of lnfectious Diseases, 4th ed. (C. L. Mandell, J. E. Bennett, and R. Dolan, eds.), Churchill Livingstone, New York, pp. 1253–1267.Google Scholar
  21. 21.
    Busch, M. P., Kleinman, S. H., Williams, A. E., Smith, J. W., Ownby, H. E., Laycock, M. E., Lee, L. L. L., Pau, C.-P., Schreiber, G. B., and the Retroviral Epidemiology Donor Study, 1996, Frequency of human immunodeficiency virus (HIV infection among contemporary anti-HIV-1 and anti-HIV-1/2 supplemental test-indeterminate blood donors, Transfusion 36: 37–44.Google Scholar
  22. 22.
    Connor, E. M., Sperling, R. S., Gelber, R., Kiselev, P., Scott, G. O’sullivan, M. J., Van Dyke, R., Bey, M., Shearer, LV., Jacobson, R. L., Jimenez, E., O’Neill, E., Bazin, B., Delfraissy, J.-F., Culnane, M., Coombs, R., Elkins, M., Moye, J., Stratton, P., and Balsley, J., for the Pediatric AIDS Clinical Trials Group Protocol 076 Study Group, 1994, Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment, N. Eng. ℑ. Med. 331: 1173–1180.Google Scholar
  23. 23.
    Paul, M. O., Tetali, S. Lesser, 51. L.: Abrams, E. J., Wang, X. P., Kowalski, R., Bamij, M., Napolitano, B., Gulick, L., Bakshi, S., and Pahwa, S., 1996, Laboratory diagnosis of infection status in infants perinatally exposed to human immunodeficiency virus type 1, ℑ.; Infect. Dis. 173: 68–76.Google Scholar
  24. 24.
    Ossewaarde, J. M., Rieffe, M., Rosenberg-Arksa, M., Ossenloppele, P. M., Nawrocki, R. P., and van Loon, A. M., 1992, Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis, ℑ. Clin. Microbiol. 30: 2122–2128.Google Scholar
  25. 25.
    Vogels, W. H., van Voorst Vader, P. C., and Schröder, F. P., 1993, Chlamydia trachomatis infection in a high-risk population: Comparison of polymerase chain reaction and cell culture for diagnosis and follow-up, ℑ. Clin. Microbiol. 31: 1103–1107.Google Scholar
  26. 26.
    Toye, B., Peeling, R. W., Jessamine, P., Claman, P., and Gemmill, I., 1996, Diagnosis of Chlamydia trachomatis infections in asymptomatic men and women by PCR assay, ℑ. Clin. Microbiol. 34:1396–1400.Google Scholar
  27. 27.
    Werner, J. C. and Wiedbrauk, D. L., 1994, Polymerase chain reaction for diagnosis of herpetic eye disease, Lab. Med. 25: 664–667.Google Scholar
  28. 28.
    Katzenstein, D. A., 1995, Viral phenotype and genotype as markers in clinical trials, ℑ. Acquired Immune Defic. Syndr. 10 (Suppl. 2): S25–S34.Google Scholar
  29. 29.
    D’Aquila, R. T., 1994, HIV-1 drug resistance. Molecular pathogenesis and laboratory monitoring, Clin. Lab. Med. 14: 393–422.Google Scholar
  30. 30.
    Baldanti, F., Sarasini, A., Silini, E., Barbi, M., Lazzarin, A., Biron, K. K., and Gerna, G., 1995, Four dually resistant human cytomegalorvirus strains from AIDS patients: Single mutations in UL97 and UL54 open reading frames are responsible for ganciclovir-and foscarnet-specific resistance, respectively, Scand. J. Infect. Dis. Suppl. 99: 103–104.Google Scholar
  31. 31.
    Zhang, Y. and Young, D., 1994, Molecular genetics of drug resistance in Mycobacterium tuberculosis, ℑ. Antimicrob. Chemother. 34: 313–319.Google Scholar
  32. 32.
    Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., and Watanabe, S., 1991, Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction, ℑ. Clin. Microbiol. 29: 2240–2244.Google Scholar
  33. 33.
    Sanchez-Pescador, R., Stempien, M. S., and Urdea, M. S., 1988, Rapid chemiluminescent nucleic acid assays for detection of TEM-1β-lactamase-mediated penicillin resistance in Neisseria gonorrhoeae and other bacteria, ℑ. Clin. Microbiol. 26: 1934–1938.Google Scholar
  34. 34.
    Mabilat, C., Goussard, S., Sougakoff, W., Spencer, R., and Courvalin, P., 1990, Direct sequencing of the amplified structural gene and promoter for the extended-broad-spectrum β-lactamase TEM-9 (RHH-1) of Klebsiella pneumoniae, Plasmid 23: 27–34.Google Scholar
  35. 35.
    Vliegenthart, J. S., Ketelaar-Van Gaalen, P. A. G., and van de Klundert, J. A. M., 1991, Identification of three genes coding for aminoclycoside-modifying enzymes by means of the polymerase chain reaction, ℑ. Antimicrob. Chemother. 25: 759–765.Google Scholar
  36. 36.
    Arthur, M., Molinas, C., Mabilat, C., and Courvalin, P., 1990, Detection of erythromycin resistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes, Antimicrob. Agents Chemother. 34: 2024–2026.Google Scholar
  37. 37.
    Welsh, J. and McClelland, M., 1990, Fingerprinting genomes using PCR with arbitrary primers, Nucl. Acids Res. 18: 7213–7218.Google Scholar
  38. 38.
    Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18:6531–6535.Google Scholar
  39. 39.
    van Belkum, A., 1994, DNA fingerprinting of medically important microorganisms by use of PCR, Clin. Microbiol. Rev. 7: 174–184.Google Scholar
  40. 40.
    Smith, D. B., Davidson, F., and Simmonds, P., 1995, Hepatitis C virus variants and the role of genotyping, ℑ. Hepatol. 23 (Suppl. 2): 26–31.Google Scholar
  41. 41.
    Manos, M. M., Ting, Y., Wright, D. K., Lewis, A. J., Broker, T. R., and Wolinsky, S. M., 1989, Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses, Cancer Cells 7: 209–214.Google Scholar
  42. 42.
    Brown, J. L., Carman, W. F., and Thomas, H., 1992, The clinical significance of molecular variation within the hepatitis B virus genome, Hepatology, 15: 144–148.Google Scholar
  43. 43.
    Wilson, K. H., 1994, Detection of culture-resistant bacterial pathogens by amplification and sequencing of ribosomal DNA, Clin. Infect. Dis. 18: 958–962.Google Scholar
  44. 44.
    Fredricks, D. N. and Relman, D. A., 1996, Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates, Clin. Microbiol. Rev. 9: 18–33.Google Scholar
  45. 45.
    Relman, D. A., Loutit, J. S., Schmidt, T. M., Falkow, S., and Tompkins, L. S., 1990, The agent of bacillary angiomatosis: An approach to the identification of uncultured pathogens, N Engl. ℑ. Med. 323: 1573–1580.Google Scholar
  46. 46.
    Anderson, B., Sims, K., Regnery, R., Robinson, L., Schmidt, M. J., Goral, S., Hager, C., and Edwards, K., 1994, Detection of Rochulimaea henselue DNA in specimens from cat scratch disease patients by PCR, ℑ. Clin. Microbiol. 32: 942–948.Google Scholar
  47. 47.
    Relman, D. A., Schmidt, T. M., MacDermott, R. P., and Falkow, S., 1992, Identification of the uncultured bacillus of Whipple’s disease, N. Engl. ℑ. Med. 327: 293–301.Google Scholar
  48. 48.
    Anderson, B. E., Sumner, J. W., Dawson, J. E., Tzianabos, T., Greene, C. R., Olson, J. G., Fishbein, D. B., Olsen-Rasmussen, M., Holloway, B. P., George, E. H., and Azad, A. F., 1992, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction, ℑ. Clin. Microbiol. 30: 775–780.Google Scholar
  49. 49.
    Ksiazek, T. G., Peters, C. J., Rollin, P. E., Zaki, S., Nochol, S., Spiropoulou, C., Morzunov, S., Feldmann, H., Sanchez, A., Khan, A. S., Mahy, B. W. J., Wachsmuth, K., and Butler, J. C., 1995, Identification of a new North American hantavirus that causes acute pulmonary insufficiency, Am. ℑ. Trop. Med. Hyg. 52: 117–123.Google Scholar
  50. 50.
    Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., and More, P. S., 1994, Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma, Science 266: 1865–1869.Google Scholar
  51. 51.
    Moore, P. S., Gao, S.-J., Dominguez, G., Cesarman, E., Lungu, O., Knowles, D. M., Garber, R., Pellett, P. E., McGeoch, D. J., and Chang, Y., 1996, Primary characterization of a herpes virus agent associated with Kaposi’s sarcoma, ℑ. Virol. 70: 549–558.Google Scholar
  52. 52.
    Cha, T.-A., Kolberg, J., Irvine, B., Stempien, M., Beall, E., Yano, M., Choo, Q-L., Houghton, M., Kuo, G., Han, J. H., and Urdea, M. S., 1991, Use of a signature nucleotide sequence of the hepatitis C virus for the detection of viral RNA in human serum and plasma, ℑ. Clin. Microbiol. 29: 2528–2534.Google Scholar
  53. 53.
    Linnen, J., Wages, J. Jr., Zhang-Keck, Z. Y., Fry, K. E., Krawczynski, K. Z., Alter, H., Koonin, E., Gallagher, M., Alter, M., Hadziyannis, S., Karaylannis, P., Fung, K., Nakatsuji, Y., Shih, J.W.-K., Young, L., Platak, M. Jr., Hoover, C., Fernandez, J., Chen, S., Zou, J.-C., Morris, T., Hyams, K. C., Ismay, S., Lifson, J. D., Hess, G., Foung, S. K. H., Thomas, H., Bradley, D., Margolis, H., and Kim, J. P., 1996, Molecular cloning and disease association of hepatitis G virus: A transfusion-transmissible agent, Science 271: 505–508.Google Scholar
  54. 54.
    Edwards, M. C. and Gibbs, R. A., 1994, Multiplex PCR: Advantages, development, and applications, PCR Methods Appl. 8: S65–S75.Google Scholar
  55. 55.
    Mahony, J. B., 1996, Multiplex polymerase chain reaction for the diagnosis of sexually transmitted diseases, Clin. Lab. Med. 16: 61–71.Google Scholar
  56. 56.
    Schuurman, R., Descamps, D., Weverling, G. J., Kaye, S., Tijnagel, J., Williams, I., van Leeuwen, R., Tedder, R., Boucher, C. A. B., Brun-Vezinet, F., and Loveday, C., 1996, Multicenter comparison of three commercial methods for quantitation of human immunodeficiency virus type 1 RNA in plasma, ℑ. Clin. Microbiol. 34: 3016–3022.Google Scholar
  57. 57.
    Gerdes, J. C., Spees, E. K., Fitting, K., Hiraki, J., Sheehan, M., Duda, D., Jarvi, T., Roehl, C., and Robertson, A. D., 1993, Prospective study utilizing a quantitative polymerase chain reaction for detection of cytomegalovirus DNA in the blood of renal transplant patients, Transplant. Proc. 25: 1411–1413.Google Scholar
  58. 58.
    Riddler, S. A., Breinig, M. C., and McKnight, J. L. C., 1994, Increased levels of circulating Epstein-Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients, Blood 84: 972–984.Google Scholar
  59. 59.
    Buttenworth, L.-A., Prior, S. L., Buda, P. J., Faoagali, J. L., and Cooksley, W. G. E., 1996, Comparison of four methods for quantitative measurement of hepatitis B viral DNA, ℑ. Hepatol. 24: 686–691.Google Scholar
  60. 60.
    Hawkins, A., Davidson. F., and Simmonds, P., 1997, Comparison of plasma virus loads among individuals infected with hepatitis C virus (HCV) genotypes 1, 2, and 3 by quantiplex HCV RNA assay versions 1 and 2, Roche monitor assay, and an in-house limiting dilution method, 3. Clin. Microbial. 35: 187–192.Google Scholar
  61. 61.
    Saag, M. S., Holodniy, M., Kuritzkes, D. R., O’Brien, W. A., Coombs, R., Poscher, M. E., Jacobsen, D. M., Shaw, G. M., Richman, D. D., and Volberding, P. A., 1996, HIV viral load markers in clinical practice, Nuture Med. 26: 25–629.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Danny L. Wiedbrauk
    • 1
  • Richrad L. Hodinka
    • 2
  1. 1.Departments of Clinical Pathology and PediatricsWilliam Beaumont HospitalRoyal Oak.
  2. 2.Departments of Pathology and Pediatrics, Clinical Virology Laboratory, Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations