Chemistry of Reactive Oxygen Species

  • Robert E. Huie
  • P. Neta

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, L. C., Fábián, I., Suzuki, K., and Gordon, G., 1992, Hypochlorous acid decomposition in the pH 5–8 region, Inorg. Chem. 31:3534–3541.CrossRefGoogle Scholar
  2. Alfassi, Z. B. (ed), 1997, Peroxyl Radicals, Wiley, New York.Google Scholar
  3. Alfassi, Z. B., Huie, R. E., and Neta, P., 1986, Substituent effects on rates of one-electron phenols by the radical ClO2, NO2, and SO3, J. Phys. Chem. 90:4156–4158.Google Scholar
  4. Alfassi, Z. B., Mosseri, S., and Neta, P., 1987, Halogenated alkylperoxyl radicals as oxidants: Effects of solvents and substituents on rates of electron transfer, J. Phys. Chem. 91:3383–3385.Google Scholar
  5. Alfassi, Z. B., Huie, R. E., Neta, P., and Shoute, L. C. T., 1990, Temperature dependence of the rate constants for reactions of inorganic radicals with organic reductants, J. Phys. Chem. 94:8800–8805.CrossRefGoogle Scholar
  6. Alfassi, Z. B., Huie, R. E., Kumar, M., and Neta, P., 1992, Temperature dependence on the rate constants for oxidation of organic compounds by peroxyl radicals in aqueous alcohol solutions, J. Phys. Chem. 96:767–770.CrossRefGoogle Scholar
  7. Alfassi, Z. B., Huie, R. E., and Neta, P., 1993a, Rate constants for reactions of perhaloalkylperoxyl radicals with alkenes, J. Phys. Chem. 97:6835–6838.Google Scholar
  8. Alfassi, Z. B., Huie, R. E., and Neta, P., 1993b, Solvent effects on the rate constants for reaction of trichloromethylperoxyl radicals with organic reductants, J. Phys. Chem. 97:7253–7257.Google Scholar
  9. Alfassi, Z. B., Huie, R. E., and Neta, P., 1997, Kinetics studies of organic peroxyl radicals in aqueous solutions and mixed solvents, in Peroxyl Radicals (Z. B. Alfassi, ed.), pp. 235–281, Wiley, New York.Google Scholar
  10. Allen, R. C., 1994, Role of oxygen in phagocyte microbicidal action, Environ. Health Perspect. 102:201–208.PubMedGoogle Scholar
  11. Amar, C., Vilkas, E., and Foos, J., 1982, Catalytic activity studies of some copper(II)-histidine-containing dipeptide complexes on aqueous superoxide ion dismutation, J. Inorg. Biochem. 17:313–323.CrossRefGoogle Scholar
  12. Antelo, J. M., Arce, F., Castro, M. C., Crugeiras, J., Perez-Moure, J. C., and Rodriguez, P., 1995a, Kinetics of the formation, decomposition, and disproportionation reactions of N-chlorobutylamines, Int. J. Chem. Kinet. 27:703–717.Google Scholar
  13. Antelo, J. M., Arce, F., and Parajo, M., 1995b, Kinetic study of the formation of N-chloramines, Int. J. Chem. Kinet. 27:637–647.Google Scholar
  14. Arudi, R. L., Bielski, B. H., and Allen, A. O., 1984, Search for singlet oxygen luminescence in the disproportionation of HO2/O2. Photochem. Photobiol. 39:703–706.PubMedGoogle Scholar
  15. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1992, Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV, J. Chem. Phys. Ref. Data 21:1125–1568.Google Scholar
  16. Aubry, J.-M., Rigaudy, J., Ferrandini, C., and Pucheault, J., 1981, Search for singlet oxygen in the disproportionation of superoxide anion, J. Am. Chem. Soc. 103:4965–4966.CrossRefGoogle Scholar
  17. Aubry, J.-M., Mandard-Cazin, B., Rougee, M., and Bensasson, R. V., 1995, Kinetic studies of singlet oxygen [4 + 2]-cycloadditions with cyclic 1,3-dienes in 28 solvents, J. Am. Chem. Soc. 117:9159–9164.CrossRefGoogle Scholar
  18. Awad, H. H., and Stanbury. D. M., 1993, Autoxidation of NO in aqueous solution, Int J. Chem. Kinet. 25:375–381.CrossRefGoogle Scholar
  19. Babior, B. M., 1994, Activation of the respiratory burst oxidase, Environ. Health Perspect. 102:53–56.PubMedGoogle Scholar
  20. Baignee, A., Howard, J. A., Scaino, J. C., and Stewart, L. C., 1983, Absolute rate constants for reactions of cumyloxy in solution, J. Am. Chem. Soc. 105:6120–6123.CrossRefGoogle Scholar
  21. Bakac, A., and Espenson, J. H., 1983, Kinetics of the oxidation of chromium(II) by hydrogen peroxide: Flash-photolytic and stopped-flow studies based on radical-trapping reactions, Inorg. Chem. 22:779–783.Google Scholar
  22. Barlow, G. E., Bisby, R. H., and Cundall, R. B., 1979, Does disproportionation of superoxide produce singlet oxygen? Radiat. Phys. Chem. 13:73–75.Google Scholar
  23. Bartlett, D., Church, D. F, Bounds, P. L., and Koppenol, W. H., 1995, The kinetics of the oxidation of l-ascorbic acid by peroxynitrite, Free Radical Biol. Med. 18:85–91.CrossRefGoogle Scholar
  24. Bartlett, P. D., and Landis, M. E., 1979, The 1,2-dioxetanes, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 243–286, Academic Press, New York.Google Scholar
  25. Barton, A. F. M., 1983, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Boca Raton, FL.Google Scholar
  26. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implication for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.PubMedGoogle Scholar
  27. Beckman, J. S., Ischiropoulos, H., Zhu, L., Woerd, M. v. d., Smith, C., Chen, J., Harrison, J., Martin, J. C., and Tsai, M., 1992, Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite, Arch. Biochem. Biophys. 298:438–445.CrossRefPubMedGoogle Scholar
  28. Bennett, J. E., 1987, A kinetic study of the self-reaction of prop-2-ylperoxyl radicals in solution using ultraviolet absorption spectroscopy, J. Chem. Soc. Faraday Trans. 1 83:1805–1813.Google Scholar
  29. Bennett, J. E., Brunton, G., Smith, J. R. L., Salmon, T. M. F., and Waddington, D. J., 1987a, Reactions of alkylperoxyl radicals in solution. A kinetic and product study of self-reactions of 2-propylperoxyl radicals between 253 and 323 K, J. Chem. Soc. Faraday Trans. 1 83:2433–2447.Google Scholar
  30. Bennett, J. E., Brunton, G., Smith, J. R. L., Salmon, T. M. F., and Waddington, D. J., 1987b, Reactions of alkylperoxyl radicals in solution. A kinetic study of self-reactions of 2-propylperoxyl radicals between 135 and 300 K, J. Chem. Soc. Faraday Trans. 1 83:2421–2432.Google Scholar
  31. Biaglow, J. K., Held, K. D., Manevich, Y., Tuttle, S., Kachur, A., and Uckun, F., 1996, Role of guanosine triphosphate in ferric ion-linked fenton chemistry, Radiat. Res. 145:554–562.PubMedGoogle Scholar
  32. Bielski, B. H. J., 1983, Evaluation of the reactivities of HO2/O2 with compounds of biological interest, in Oxy Radicals and their Scavenger Systems (G. Cohen and R. A. Greenwald, eds.), pp. 1–7, Elsevier, Amsterdam.Google Scholar
  33. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B., 1985, Reactivity of HO2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data 14:1041–1100.Google Scholar
  34. Blough, N. V., and Zafiriou, O. C., 1985, Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution, Inorg. Chem. 24:3500–3504.CrossRefGoogle Scholar
  35. Bogan, D. J., Celii, F., Sheinson, R. S., and Coveleskie, R. A., 1984, Observation of O2(b1g+→X3g) chemiluminescence from the self-reaction of isopropylperoxy radicals, J. Photochem. 25:409–417.CrossRefGoogle Scholar
  36. Böhm, F., Edge, R., Land, E. J., McGarvey, D. J., and Truscott, T. G., 1997, Carotenoids enhance vitamin E antioxidant efficiency, J. Am. Chem. Soc: 119:621–622.Google Scholar
  37. Bothe, E., and Schulte-Frohlinde, D., 1978, The bimolecular decay of α-hydroxymethylkperoxyl radicals in aqueous solution, Z. Naturforsch. 33B:786–788.Google Scholar
  38. Brault, D., 1985, Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: Radical processes involving iron porphyrins, Environ. Health Perspect. 64:53–60.PubMedGoogle Scholar
  39. Brault, D., Neta, P., and Patterson, L. K., 1985, The lipid peroxidation model for halogenated hydrocarbon toxicity. Kinetics of peroxyl radical processes involving fatty acids and Fe(III)-porphyrins, Chem.-Biol. Interact. 54:289–297.CrossRefPubMedGoogle Scholar
  40. Brigelius, R., Spoettl, R., Bors, W., Lengfelder, E., Saran, M., and Weser, U., 1974, Superoxide dismutase activity of low molecular weight Cu2+ chelates studied by pulse radiolysis. FEBS. Lett. 47:72–75.CrossRefPubMedGoogle Scholar
  41. Buettner, G. R., and Jurkiewicz, B. A., 1996, Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 145:532–541.PubMedGoogle Scholar
  42. Bull, C., McClune, G. J., and Fee, J. A., 1983, The mechanisms of Fe-EDTA catalyzed superoxide dismutation, J. Am. Chem. Soc. 105:5290–5300.CrossRefGoogle Scholar
  43. Butler, J., and Halliwell, B., 1982, Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 218:174–178.CrossRefPubMedGoogle Scholar
  44. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution, J. Phys. Chem. Ref. Data 17:513–886.Google Scholar
  45. Buxton, G. V., Mulazzani, Q. G., and Ross, A. B., 1995, Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution. J. Phys. Chem. Ref. Data 24(3):1055–1349.Google Scholar
  46. Cabelli, D. E., 1997, The reactions of HO2/O2 radicals in aqueous solution. in Peroxyl Radicals (Z. B. Alfassi, ed.), pp. 407–437, Wiley, New York.Google Scholar
  47. Cabelli, D. E., and Bielski, B. H. J., 1983, Kinetics and mechanism for the oxidation of ascorbic acid by radicals. A pulsed radiolysis and stopped-flow photolysis study. J. Phys. Chem. 87:1809–1812.CrossRefGoogle Scholar
  48. Candeias, L. P., 1993, Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett. 333:151–153.CrossRefPubMedGoogle Scholar
  49. Candeias, L. P., Stratford, M. R. L., and Wardman, P., 1994, Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron (II) complex. Free Radical Res. 20:241–249.Google Scholar
  50. Carr, A. C., van der Berg, J. J. M., and Winterbourn, C. C., 1996, Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332:63–69.CrossRefPubMedGoogle Scholar
  51. Castro, L., Alvarez, M. N., and Radi, R., 1996, Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence. Arch. Biochem. Biophys. 333:179–188.CrossRefPubMedGoogle Scholar
  52. Chakrabartty, S. K., 1978, Alkaline hypohalite oxidations, in Oxidation in Organic Chemistry (W. S. Trahanovsky, ed.), pp. 343–370, Academic Press, New York.Google Scholar
  53. Cheeseman, K. H., Albano, E. F., Tomasi, A., and Slater, T. F., 1985, Biochemical studies on the metabolic activation of halogenated alkanes. Environ. Health Perspect. 64:85–101.PubMedGoogle Scholar
  54. Chen, S. N., and Hoffman, M. Z., 1973, Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat. Res. 56:40–47.PubMedGoogle Scholar
  55. Chen, S. N., and Hoffman, M. Z., 1975, Effect of pH on the reactivity of the carbonate radical in aqueous solution. Radiat. Res. 62:18–27.PubMedGoogle Scholar
  56. Clifton, C. L., and Huie, R. E., 1993, Rate constants for some hydrogen abstraction reactions of the carbonate radical. Int. J. Chem. Kinet. 25:199–203.CrossRefGoogle Scholar
  57. Cosgrove, J. P., Church, D. F., and Pryor, W. A., 1987, The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304.PubMedGoogle Scholar
  58. Crow, J. P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C. D., Radi, R., Koppenol, W.H., and Beckman, J. S., 1994, On the pH-dependent yield of hydroxyl radical products from peroxynitrite, Free Radical Biol. Med. 16:331–338.CrossRefGoogle Scholar
  59. Csànyi, L., and Galbàcs, Z. M., 1985, Carbon dioxide-mediated decomposition of hydrogen peroxide in alkaline solutions. J. Chem. Soc. Faraday Trans. I 81:113–116.Google Scholar
  60. Denicola, A., Freeman, B. A., Trujillo, M., and Radi, R., 1996, Peroxynitrite reaction with carbon dioxide/bicarbonate: Kineticsandinfluenceonperoxynitrite-mediatedoxidations. Arch. Biochem. Biophys. 333:49–58.CrossRefPubMedGoogle Scholar
  61. Denisov, E. T., and Denisova, T. G., 1993, Kinetic parameters of the reactions RO2+RH in the framework of the parabolic model of transition state. Kinet. Catal. 34:173–179.Google Scholar
  62. Dikalov, S., Khramtsov, V, and Zimmer, G., 1996, Determination of rate constants of the reactions of thiols with superoxide radical by electronparamagnetic resonance: Critical remarks on spectrophotometric approaches. Arch. Biochem. Biophys. 326:207–218.CrossRefPubMedGoogle Scholar
  63. Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K., and Sies, H., 1994, Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 355:287–289.PubMedGoogle Scholar
  64. Dohrmann, J., and Bergmann, B., 1995, Equilibria and rates of redox reactions involving the 2-tert-butyl-l,4-benzosemiquinone radical in aqueous solution: An investigation by potentiometry, ESR, and pulse radiolysis. J. Phys. Chem. 99:1218–1227.CrossRefGoogle Scholar
  65. Eberhardt, M. K., and Colina, R., 1988, The Reaction of OH radicals with dimethyl sulfoxide. A comparative study of Fenton’s reagent and the radiolysis of aqueous dimethyl sulfoxide solutions. J. Org. Chem. 53:1071–1074.Google Scholar
  66. Edwards, J. O., and Plumb, R. C., 1994, The chemistry of peroxonitrites, in Progress in Inorganic Chemistry (K. D. Karlin, ed.), pp. 599–635, Wiley, New York.Google Scholar
  67. Eguchi, W., Tanigaki, M., Mutoh, K., and Tsuchiya, H., 1989, Kagaku Kogaku Ronbunshu d15:1115.Google Scholar
  68. Elango, T. P., Ramakrishnan, V., Vancheesan, S., and Kuriacose, J. C., 1984, Reaction of the carbonate radical with substituted anilines. Proc. Indian Acad. Sci. (Chem. Sci.) 93:47–52.Google Scholar
  69. Elliot, A. J., and Simsons, A. S., 1984, Reactions of NO2 and nitrite ion with organic radicals. Can. J. Chem. 62:1831–1834.Google Scholar
  70. Erben-Russ, M., Michel, C., Bors, W., and Saran, M., 1987, Absolute rate constants of alkoxyl radical reactions in aqueous solution. J. Phys. Chem. 91:2362–2365.CrossRefGoogle Scholar
  71. Eriksen, T. E., Lind, J., and Merényi, G., 1985, On the acid-base equilibrium of the carbonate radical. Radiat. Phys. Chem. 26:197–199.Google Scholar
  72. Folkes, L. K., Candeias, L. P., and Wardman, P., 1995, Kinetics and mechanisms of hypochlorous acid reactions, Arch. Biochem. Biophys. 323:120–126.CrossRefPubMedGoogle Scholar
  73. Fontana, F., Minisci, F., Vismara, E., Faraci, G., and Platone, E., 1989, Chlorination by hypochlorous acid. Free-radical versus electrophilic reactions, in Free Radicals in Synthesis and Biology (F. Minisci, ed.), pp. 269–282, Kluwer, Dordrecht.Google Scholar
  74. Foote, C. S., Shook, F. C., and Abakerh, R. A., 1980, Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation. J. Am. Chem. Soc. 102:2503–2504.CrossRefGoogle Scholar
  75. Forni, L. G., Packer, J. E., Slater, T. F., and Willson, R. L., 1983, Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: A pulse radiolysis study. Chem.-Biol. Interact. 45:171–177.CrossRefPubMedGoogle Scholar
  76. Forni, L. G., Mora-Arellano, V. O., Packer, J. E., and Willson, R. L., 1986, Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. J. Chem. Soc. Perkin Trans. 2 1986:1–6.Google Scholar
  77. Former de Violet, P., Veyret, B., Vincendeau, P., and Caristan, A., 1984, Chemiluminescence induced by oxidation of tryptophan by singlet oxygen and by hypochlorous acid. Implications in the luminescence emitted in phagocytosis. Photochem. Photobiol. 39:707–712.Google Scholar
  78. Gilbert, B. C., Holmes, R. G. G., Laue, H. A. H., and Norman, R. O. C., 1976, Electron spin resonance studies. Part L. Reactions of alkoxyl radicals generated from alkyl hydroperoxides and titanium (III) ion in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1976:1047–1052.Google Scholar
  79. Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., 1977, Electron spin resonance studies. Part LII. Reactions of secondary alkoxyl radicals. J. Chem. Res. 1977:101–113.Google Scholar
  80. Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., 1981, Electron spin resonance studies. Part 61. The generation and reactions of the t-butoxyl radical in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1981:1392–1400.Google Scholar
  81. Goldstein, S., and Czapski, G., 1995a, Direct and indirect oxidations by peroxynitrite. Inorg. Chem. 34:4041–4048.CrossRefGoogle Scholar
  82. Goldstein, S., and Czapski, G., 1995b, Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediates. J. Am. Chem. Soc. 117:12078–12084.CrossRefGoogle Scholar
  83. Goldstein, S., and Czapski, G., 1995c, The reaction of NO with O2- and HO2: A pulse radiolysis study. Free Radical Biol. Med. 19:505–510.CrossRefGoogle Scholar
  84. Goldstein, S., Czapski, G., and Meyerstein, D., 1990, A mechanistic study of the copper(II)-peptide-catalyzed superoxide dismutation. A pulse radiolysis study. J. Am. Chem. Soc. 112:6489–6492.Google Scholar
  85. Goldstein, S., Meyerstein, D., and Czapski, G., 1993, The Fenton reagents. Free Rad. Biol. Med. 15:435–445.CrossRefPubMedGoogle Scholar
  86. Gollnick, K., and Kuhn, H. J., 1979, Ene-reactions with singlet oxygen, in Singlet Oxygen (H. H. Wasserman, and R. W. Murray, eds.), pp. 287-427, Academic Press, New York.Google Scholar
  87. Gow, A., Duran, D., Thom, S. R., and Ischiropoulos, H., 1996, Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys. 333:42–48.CrossRefPubMedGoogle Scholar
  88. Gray, D., Lissi, E., and Heicklen, J., 1972, The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide, J. Phys. Chem. 76:1919.Google Scholar
  89. Groves, J. T., and Maria, S. S., 1995, Peroxynitrite-induced DNA strand scission mediated by a manganese porphyrin, J. Am. Chem. Soc. 117:9578–9579.Google Scholar
  90. Guajardo, R. J., and Mascharak, P. K., 1995, Lipid peroxidation by synthetic analogues of iron bleomycin: Possible role of a low-spin hydroperoxo iron(III) intermediate in lipid peroxidation induced by bleomycin. Inorg. Chem. 34:802–808.CrossRefGoogle Scholar
  91. Gunther, M. R., Hanna, P. M., Mason, R. P., and Cohen, M. S., 1995, Hydroxyl radical formation from cuprous ion and hydrogen peroxide: A spin-trapping study, Arch. Biochem. Biophys. 316:515–522.CrossRefPubMedGoogle Scholar
  92. Halliwell, B., and Cross, C. E., 1994, Oxygen-derived species: Their relation to human disease and environmental stress, Environ. Health Perspect. 102:5–12.PubMedGoogle Scholar
  93. Halliwell, B., and Gutteridge, J. M. C., 1989, Free Radicals in Biology and Medicine, Oxford Univeristy Press (Clarendon), London.Google Scholar
  94. Held, A. M., Halko, D. J., and Hurst, J. K., 1978, Mechanisms of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc. 100:5732–5740.CrossRefGoogle Scholar
  95. Held, K. D., Sylvester, F. C., Hopcia, K. L., and Biaglow, J. E., 1996, Role of Fenton chemistry in thiol-induced toxicity and apoptosis, Radiat. Res. 145:542–553.PubMedGoogle Scholar
  96. Hildebrand, J. H., Prausnitz, J. M., and Scott, R. L., 1970, Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, NJ.Google Scholar
  97. Hogg, N., Darley-Usmar, V. M., Eilson, M. T., and Moncada, S., 1992, Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide, Biochem. J. 281:419–424.PubMedGoogle Scholar
  98. Hogg, N., Joseph, J., and Kalyanaraman, B., 1994, The oxidation ofα-tocopherol and Trolox by peroxynitrite, Arch. Biochem. Biophys. 314:153–158.PubMedGoogle Scholar
  99. Hogg, N., Singh, R. J., Goss, S. P. A., and Kalyanaraman, B., 1996, The reaction between nitric oxide andα-tocopherol A reappraisal, Biochem. Biophys. Res. Commun. 224:696–702.CrossRefPubMedGoogle Scholar
  100. Houk, K. N., Condroski, K. R., and Pryor, W. A., 1996, Radical and concerted mechanisms in oxidations of amines, sulfides, and alkenes by peroxynitrite, peroxynitrous acid, and the peroxynitrite-CO2 adduct: Density functional theory transition state structures and energetics, J. Am. Chem. Soc. 118:13002–13006.CrossRefGoogle Scholar
  101. Howard, J. A., 1984, The application of kinetic electron spin resonance spectroscopy to some reactions of t-butylperoxide in solution, Rev. Chem. Intermed. 5:1–19.Google Scholar
  102. Howard, J. A., and Ingold, K. U., 1968, The self-reaction of sec-butylperoxyradicals. Confirmation of the Russell mechanism, J. Am. Chem. Soc. 90:1056–1058.Google Scholar
  103. Howard, J. A., and Scaiano, J. C., 1984, Radical reaction rates in liquid. Oxyl, peroxyl, and related radicals, in Landolt-Börnstein. Numerical Data on Functional Relationships in Science and Technology. New Series, Group II; Atomic and Molecular Physics (K.-H. Hellwege and O. Madelung, eds.), Vol. 13, Part D, Springer-Verlag, Berlin (see also update in Vol. 18, Part D2, 1997).Google Scholar
  104. Hughes, M. N., and Nicklin, H. G., 1968, The chemistry of pernitrites. Part 1. Kinetics of decomposition of pernitrous acid, J. Chem. Soc. A 450–452.Google Scholar
  105. Hughes, M. N., Nicklin, H. G., and Sackrule, W. A. C., 1971, The chemistry of peroxonitrites. Part III. The reaction of peroxonitrite with nucleophiles in alkali, and other nitrite producing reactions, J. Chem. Soc. A 1971:3722–3725.Google Scholar
  106. Huie, R. E., and Herron, J. T., 1973, Kinetics of the reactions of singlet molecular oxygen (O21Δg) with organic compounds in the gas phase, Int. J. Chem. Kinet. 5:197–211.CrossRefGoogle Scholar
  107. Huie, R. E., and Padmaja, S., 1993, The reaction of NO with superoxide, Free Radical Res. Commun. 18:195–199.Google Scholar
  108. Huie, R. E., Alfassi, Z. B., and Neta, P., 1986, Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions, Int. J. Chem. Kinet. 18:1185–1191.CrossRefGoogle Scholar
  109. Huie, R. E., Clifton, C. L., and Neta, P., 1991a, Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions, Radiat. Phys. Chem. 38:477–481.Google Scholar
  110. Huie, R. E., Shoute, L. C. T., and Neta, P., 1991b, Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants, Int. J. Chem. Kinet. 23:541–552.CrossRefGoogle Scholar
  111. Ignarro, L. J., Fukuto, J. M., Griscavage, J. M., and Rogers, N. E., 1993, Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine, Proc. Natl. Acad. Sci. USA 90:8103–8107.PubMedGoogle Scholar
  112. Ilan, Y., Rabani, J., and Fridovich, I., 1981, Superoxide dismuting activity of an iron porphyrin, Inorg. Nucl. Chem. Lett. 17:93–96.CrossRefGoogle Scholar
  113. Itoh, S., Nagaoka, S.-I., Mukai, K., Ikesu, S., and Kaneko, Y., 1994, Kinetic study of quenching reactions of singlet oxygen and scavenging reactions of free radicals byα-,β-,τ-, andδ-tocopheramines in ethanol solution and micellar dispersion, Lipids 29:799–802.PubMedGoogle Scholar
  114. Johnson, G. R. A., Nazhat, N. B., and Saadalla-Nazhat, R. A., 1988, Reaction of the aquacopper(I) ion with hydrogen peroxide, J. Chem. Soc. Faraday Trans. 184:501–510.Google Scholar
  115. Jonsson, M., 1996, Thermochemical properties of peroxides and peroxyl radicals, J. Phys. Chem. 100:6814–6818.Google Scholar
  116. Kanofsky, J. R., 1986a, Singlet oxygen production in superoxide ion-halocarbon systems, J. Am. Chem. Soc. 108:2977–2979.CrossRefGoogle Scholar
  117. Kanofsky, J. R., 1986b, Singlet oxygen production from the reactions of alkylperoxy radicals. Evidence from 1268-nm chemiluminescence, J. Org. Chem. 51:3386–3388.CrossRefGoogle Scholar
  118. Kasha, M., and Khan, A. U., 1970, The physics, chemistry, and biology of singlet molecular oxygen, in International Conference on Singlet Molecular Oxygen and its Role in Environmental Sciences (A. M. Trozzolo, ed.), pp. 5–23, Annals of the New York Academy of Sciences, New York.Google Scholar
  119. Kawanishi, S., Inoue, S., and Yamamoto, K., 1994, Active oxygen species in DNA damage induced by carcinogenic metal compounds, Environ. Health Perspect. 102:17–20.PubMedGoogle Scholar
  120. Kearns, D. R., 1979, Solvent and solvent isotope effects on the lifetime of singlet oxygen, in Singlet Oxygen (H. H. Wasserman, and R. W. Murray, eds.), pp. 115–137, Academic Press, New York.Google Scholar
  121. Khan, A. U., 1995, Quantitative generation of singlet (1Δg) oxygen from acidified aqueous peroxynitrite produced by the reaction of nitric oxide and superoxide anion, J. Biolumin. Chemilumin. 10:329–333.CrossRefPubMedGoogle Scholar
  122. Khan, A. U., and Kasha, M., 1994a, Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: Application to studies on the deleterious health effects of chlorinated drinking water, Proc. Natl. Acad. Sci. USA 91:12362–12364.PubMedGoogle Scholar
  123. Khan, A. U., and Kasha, M., 1994b, Singlet molecular oxygen in the Haber-Weiss reaction, Proc. Natl. Acad. Sci.USA 91:12365–12367.PubMedGoogle Scholar
  124. Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S., 1994, Kinetics of nitric oxide autoxidation in aqueous solution, J. Biol. Chem. 269:5881–5883.PubMedGoogle Scholar
  125. Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S., 1995, Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen, J. Biol. Chem. 270:28158–28164.PubMedGoogle Scholar
  126. King, P. A., Anderson, V. E., Edwards, J. O., Gustafson, G., Plumb, R. C., and Suggs, J. W., 1992, A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: Reaction with proteins and nucleic acid, J. Am. Chem. Soc. 114:5430–5432.Google Scholar
  127. Klaning, U. K., and Wolff, T., 1985, Laser flash photolysis of HC1O, ClO, HBrO, and BrO in aqueous solution. Reactions of Cl-and Br-atoms, Ber. Bunsenges. Phys. Chem. 89:243–245.Google Scholar
  128. Kobayashi, K., Miki, M., and Tagawa, S., 1995, Pulse-radiolysis study of the reaction of nitric oxide with superoxide, J. Chem. Soc. Dalton Trans. 1995:2885–2889.Google Scholar
  129. Kochi, J. K., 1962, Chemistry of alkoxy radicals: Cleavage reactions, J. Am. Chem. Soc. 84:1193–1197.Google Scholar
  130. Koelewijn, P., 1972, Epoxidation of olefins by alkylperoxyl radicals, Recl. Trav. Chim. Pays-Bas 91:759–779.Google Scholar
  131. Koppenol, W. H., 1985, The reaction of ferrous EDTA with hydrogen peroxide: Evidence against hydroxyl radical formation, Free Radical Biol. Med. 1:281–285.Google Scholar
  132. Koppenol, W. H., 1993, The centennial of the Fenton reaction, Free Radical Biol. Med. 15:645–651.Google Scholar
  133. Koppenol, W. H., and Butler, J., 1985, Energies of interconversion reactions of oxyradicals, Adv. Free Radical Biol.Med. 1:91–131.Google Scholar
  134. Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S., 1992, Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide, Chem. Res. Toxicol. 5:834–842.CrossRefPubMedGoogle Scholar
  135. Krauss, M., 1994, Electronic structure and spectra of the peroxynitrite anion, Chem. Phys. Lett. 222:513–516.CrossRefGoogle Scholar
  136. Kuhn, A. T, and Rice, C. L., 1985, The Halogens, in: Standard Potentials in Aqueous Solution (A. J. Bard, R. Parsons, and J. Jordan, eds.), pp. 67–92, Dekker, New York.Google Scholar
  137. Laskey, R. E., and Mathews, W. R., 1996, Nitric oxide inhibits peroxynitrite-induced production of hydroxyei-cosatetraenoic acids and F2-isoprostanes in phosphatidylcholine liposomes. Arch. Biochem. Biophys. 330:193–198.CrossRefPubMedGoogle Scholar
  138. Lemercier, J.-N., Squadrito, G. L., and Pryor, W. A., 1995, Spin trap studies on the decomposition of peroxynitrite, Arch. Biochem. Biophys. 321:31–39.CrossRefPubMedGoogle Scholar
  139. Lewis, R. S., and Deen, W. M., 1994, Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions, Chem. Res. Toxicol. 7:568–574.CrossRefPubMedGoogle Scholar
  140. Lewis, R. S., Tannenbaum, S. R., and Deen, W. M., 1995, Kinetics of N-nitrosation in oxygenated nitric oxide solutions at physiological pH: Role of nitrous anhydride and effects of phosphate and chloride, J. Am. Chem. Soc. 117:3933–3939.Google Scholar
  141. Liebler, D. C., Stratton, S. R, and Kaysen, K. L., 1997, Antioxidant actions of β-carotene in liposomal and microsomal membranes: Role of carotenoid-membrane incorporation and α-tocopherol, Arch. Biochem. Biophys. 338:244–250.CrossRefPubMedGoogle Scholar
  142. Lissi, E. A., Encinas, M. V., Lemp, E., and Rubio, M. A.,1993, Singlet oxygen O2(1Δg) bimolecular processes. Solvent and compartmentalization effects, Chem. Rev. 93:699–723.Google Scholar
  143. Løgager, T., and Sehested, K., 1993, Formation and decay of pernitrous acid: A pulse radiolysis study, J. Phys. Chem. 97:6664–6669.Google Scholar
  144. Long, C. A., and Bielski, B. H. J., 1980, Rate of reaction of superoxide radical with chlorine-containing species, J. Phys. Chem. 84:555–557.CrossRefGoogle Scholar
  145. Luo, Y, Han, Z., Chin, S. M., and Linn, S., 1994, Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA, Proc. Natl. Acad. Sci. USA 91:12438–12442.PubMedGoogle Scholar
  146. Lymar, S. V., and Hurst, J. K., 1995, Rapid reaction between peroxonitrite ion and carbon dioxide: Implications for biological activity, J. Am. Chem. Soc. 117:8867–8868.CrossRefGoogle Scholar
  147. Lymar, S. V., Jiang, Q., and Hurst, J. K., 1996, Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite, Biochemistry 35:7855–7861.CrossRefPubMedGoogle Scholar
  148. Mahoney, L. R., 1970, Evidence for the formation of hydroxyl radicals in the isomerization of pernitrous acid in aqueous solution, J. Am. Chem. Soc. 92:5262–5263.Google Scholar
  149. Mao, Y., Zang, L., and Shi, X., 1995, Singlet oxygen generation in the superoxide reaction, Biochem. Mol. Biol. Interact. 36:227–232.Google Scholar
  150. March, J., 1985, Advanced Organic Chemistry, 3rd ed., Wiley, New York.Google Scholar
  151. Marcus, R. A., and Sutin, N., 1985, Electron transfer in chemistry and biology, Biochim. Biophys. Acta 811:265–322.Google Scholar
  152. Masarwa, M., Cohen, H. Meyerstein, D., Hickman, D. L., Bakac, A., and Espenson, J. H., 1988, Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cuaq+ and Craq2+J. Am. Chem. Soc. 110:4293–4297.CrossRefGoogle Scholar
  153. McGrath, M. P., and Rowland, F. S., 1994, Determination of the barriers of internal rotation in ONOOX (X=H, Cl) and characterization of the minimum energy conformers, J. Phys. Chem. 98:1061–1067.Google Scholar
  154. McKee, M. L., 1995, Ab initio study of the N2O4 potential energy surface. Computational evidence for a new N2O4 isomer, J. Am. Chem. Soc. 117:1629–1637.Google Scholar
  155. Meisel, D., Levanon, H., and Czapski, G., 1974, Hydroperoxyl radical reactions. II. Cupric ions in modulated photolysis. Electron paramagnetic resonance experiments, J. Phys. Chem. 78:779–782.Google Scholar
  156. Merenyi, G., Lind, J., and Engman, L., 1994. One-and two electron reduction potentials of peroxyl radicals and related species. J. Chem. Soc. Perkin Trans. 2 1994:2551–2553.Google Scholar
  157. Moffett, J. W., and Zika, R. G., 1987, Reaction kinetics of hydrogen peroxide with copper and iron in seawater, Environ. Sci. Technol. 21:804–810.CrossRefGoogle Scholar
  158. Moore, J. S., Phillips, G. O., and Sosnowski, A., 1977, Reaction of the carbonate radical anion with substituted phenols, Int. J. Radiat, Biol. 31:603–605.Google Scholar
  159. Mosseri, S., Alfassi, Z. B., and Neta, P., 1987, Absolute rate constants for hydrogen abstraction from hydrocarbons by the trichloromethylperoxyl radical, Int. J. Chem. Kinet. 19:309–317.CrossRefGoogle Scholar
  160. Mukai, K., Daifuku, K., Okabe, K., Tanigaki, T., and Inoue, K., 1991, Structure-activity relationship in the quenching reaction singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching of singlet oxygen and scavenging of peroxyl radicals in solution, J. Org. Chem. 56:4188–4192.CrossRefGoogle Scholar
  161. Murray, R. W., 1979, Chemical sources of singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 59–114, Academic Press, New York.Google Scholar
  162. Nagano, T., and Fridovich, I., 1985, Docs the xanthine oxidase reaction generate singlet oxygen? Photochem. Photobiol. 41:33–37.PubMedGoogle Scholar
  163. Nahor, G. S., and Neta, R, 1991, Rate constants for reactions of perfluorobutylperoxyl radical with alkenes, Int. J. Chem. Kinet. 23:941–946.CrossRefGoogle Scholar
  164. Navarro, J. A., Rosa, M. A. d. l., Roncel, M., and Rosa, F. F. d. l., 1984, Carbon dioxide-mediated decomposition of hydrogen peroxide in alkaline solutions, J. Chem. Soc. Faraday Trims. 1 80:249–253.Google Scholar
  165. Neta, P., Huie, R. E., and Ross, A. B., 1988, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17:1027–1284.Google Scholar
  166. Neta, P., Huie, R. E., Maruthamuthu, P., and Steenken, S., 1989a, Solvent effects in the reactions of peroxyl radicals with organic reductants. Evidence for proton transfer mediated electron transfer, J. Phys. Chem. 93:7654–7659.Google Scholar
  167. Neta, P., Huie, R. E., Mosseri, S., Shastri, L. V., Mittal, J. P., Maruthamuthu, P., and Steenken, S., 1989b, Rate constants for reaction of substituted methylperoxyl radicals with ascorbate ions and TMPD, J. Phys. Chem. 93:4099–4104.Google Scholar
  168. Neta, P., Huie, R. E., and Ross, A. B., 1990, Rate constants for reactions of peroxyl radicals in fluid solutions, J. Phys. Chem. Ref. Data 19:413–513.Google Scholar
  169. Neta, P., Grodkowski, J., and Ross, A. B., 1996, Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution, J. Phys. Chem. Ref. Data 24:709–1068.Google Scholar
  170. Noronha-Dutra, A. A., Epperlein, M. M., and Woolf, N., 1993, Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing, FEBS Lett. 321:59–62.CrossRefPubMedGoogle Scholar
  171. Nottingham, W. C., and Sutter, J. R., 1986, Kinetics of the oxidation of nitric oxide by chlorine and oxygen in nonaqueous media, Int. J. Chem. Kinet. 18:1289–1302.CrossRefGoogle Scholar
  172. Ogryzlo, E. A., 1979, Gaseous singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 35–58, Academic Press, New York.Google Scholar
  173. Packer, J. E., Slater, T. F., and Willson, R. L., 1979, Direct observation of a free radical interaction between vitamin E and vitamin C, Nature 278:737–738.CrossRefPubMedGoogle Scholar
  174. Padmaja, S., and Huie, R. E., 1993, The reaction of nitric oxide with organic peroxyl radicals, Biochem. Biophys. Res. Commun. 195:539–544.CrossRefPubMedGoogle Scholar
  175. Padmaja, S., Ramazenuan, M. S., Bounds, P. L., and Koppenol, W. H., 1996, Reaction of peroxynitrite with L-tryptophan, Redox Rep. 2: 173–177.Google Scholar
  176. Pan, X.-M., and von Sonntag, C., 1990, OH-radical-induced oxidation of benzene in the presence of oxygen. A pulse radiolysis study, Z. Naturforsch. B45:1337–1344.Google Scholar
  177. Pasternack, R. F., and Halliwell, B., 1979, Superoxide dismutase activities of an iron porphyrin and other iron complexes, J. Am. Chem. Soc. 101:1026–1031.CrossRefGoogle Scholar
  178. Pasternack, R. F., and Skowronek, W. R., 1979, Catalysis of the disproportionation of superoxide by metalloporphyrins, J. Inorg. Biochem. 11:261–267.CrossRefPubMedGoogle Scholar
  179. Paul, H., Small, R. D., and Scaiano, J.C., 1978, Hydrogen abstraction by tert-butoxy radicals. A laser photolysis and electron spin resonance study, J. Am. Chem. Soc. 100:4520–4527.CrossRefGoogle Scholar
  180. Peretz, P., Solomon, D., Weinraub, D., and Faraggi, M., 1982, Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins. Int. J. Radiat. Biol. 42:449–456.Google Scholar
  181. Pires, M., Rossi, M. J., and Ross, D. S., 1994, Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase, Int. J. Chem. Kinet. 26:1207–1227.CrossRefGoogle Scholar
  182. Plumb, R. C., Edwards, J. O., and Herman, M. A., 1992, Problem of concurrent measurements of peroxonitrite and nitrite contents, Analyst 117:1639–1641.CrossRefGoogle Scholar
  183. Pogozelski, W. K., McNeese, T. J., and Tullius, T. D., 1995, What species is responsible for strand scission in the reaction of [FeHEDTA]2 and H2O2 with DNA? J. Am. Chem. Soc. 117:6428–6433.CrossRefGoogle Scholar
  184. Pogrebnaya, V. L., Usov, A. P., Baranov, A. V., Nesterenko, A. I., and Bez"yazychnyi, P. I., 1975, Oxidation of nitric oxide by oxygen in the liquid phase, Zh. Prikl. Khim. (English Trans.) 48:1004–1007.Google Scholar
  185. Porter, N. A., 1986, Mechanisms for the autoxidation of polyunsaturated lipids, Acc. Chem. Res. 19:262–268.CrossRefGoogle Scholar
  186. Porter, N. A., Mills, K. A., and Carter, R. L., 1994, A mechanistic study of oleate autoxidation: Competing peroxyl H-atom abstraction and rearrangement, J. Am. Chem. Soc. 116:6690–6696.Google Scholar
  187. Prütz, W. A., 1996, Hypochlorous acid interactions with thiols, nucleotides, DNA and other biological substrates, Arch. Biochem. Biophys. 332:110–120.CrossRefPubMedGoogle Scholar
  188. Prütz, W. A., Mönig, H., Butler, J., and Land, E. J., 1985, Reactions of nitrogen dioxide in aqueous model systems: Oxidation of tyrosine units in peptides and proteins, Arch. Biochem. Biophys. 243:125–134.PubMedGoogle Scholar
  189. Pryor, W. A., Lightsey, J. W., and Church, D. F., 1982, Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: Addition and hydrogen abstraction mechanisms, J. Am. Chem. Soc. 104:6685–6692.Google Scholar
  190. Pryor, W. A., Jin, X., and Squadrito, G. L., 1994, One-and two-electronoxidations of methionine by peroxynitrite, Proc. Natl. Acad. Sci. USA 91:11173–11177.PubMedGoogle Scholar
  191. Rabani, J., Klug-Roth, D., and Lilie, J., 1973, Pulse radiolytic investigations of the catalyzed diproportionation of peroxy radicals. Aqueous cupric ions, J. Phys. Chem. 77:1169–1175.CrossRefGoogle Scholar
  192. Radi, R., Beckman, J. S., Bush, K. M., and Free, B. A., 1991a, Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys. 288:481–487.PubMedGoogle Scholar
  193. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991b, Peroxynitrite oxidation of sulfhydryls, J. Biol. Chem. 266:4244–4250.PubMedGoogle Scholar
  194. Radi, R., Cosgrove, T. P., Beckman, J. S., and Freeman, B. A., 1993, Peroxynitrite-induced luminol chemiluminescence, Biochem. J. 290:51–57.PubMedGoogle Scholar
  195. Rahhal, S, and Richter, H.W., 1988, Reduction of hydrogen peroxide by the ferrous ironchelate of diethylenetriamine-N, N, N,N’,N’-pentaacetate, J. Am. Chem. Soc. 110:3126–3133.CrossRefGoogle Scholar
  196. Ramezanian, M. S., Padmaja, S., and Koppenol, W. H., 1996, Nitration and hydroxylation of phenolic compounds by peroxynitrite, Chem. Res. Toxicol. 9:232–240.CrossRefPubMedGoogle Scholar
  197. Reszka, K. J., Chignell, C. F., and Bilski, P., 1994, Spin trapping of nitric oxide (NO) by acinitromethane in aqueous solution, J. Am. Chem Soc. 116:4119–4120.CrossRefGoogle Scholar
  198. Ross, A. B., Mallard, W. G., Hellman, W. P., Bielski, B. H. J., Buxton, G. V., Cabelli, D. E., Greenstock, C. L., Huie, R. E., and Neta, P., 1997, NDRL/NIST solution kinetics database. Ver. 3.0, NIST Standard Reference Database 40.Google Scholar
  199. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation, J. Biol. Chem. 269:26066–26075.PubMedGoogle Scholar
  200. Rush, J. D., and Koppenol, W. H., 1986, Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome, J. Biol. Chem. 261:6730–6733.PubMedGoogle Scholar
  201. Rush, J.D., and Koppenol, W.H., 1987, The reaction between ferrous polyaminocarboxylate complexes and hydrogen peroxide: An investigation of the reaction intermediates by stopped flow spectrophotometry, J. Inorg. Biochem. 29:199–215.CrossRefPubMedGoogle Scholar
  202. Samuni, A., 1972, The precursors of the metal-complexed hydroperoxyl radical, J. Phys. Chem. 76:2207–2213.CrossRefGoogle Scholar
  203. Samuni, A., and Czapski, G., 1970a, Complexes of peroxy radical with transition metal ions, J.Phys.Chem. 74:4592–4594.CrossRefGoogle Scholar
  204. Samuni, A., and Czapski, G., 1970b, Oxidation of Ce3+ by HO2 radical and Ce3+-HO2 complex formation, Israel. Chem. 8:551–561.Google Scholar
  205. Samuni, A., Aronovitch, J., Chevion, M., and Czapski, G., 1983. Metal-mediated hydroxyl radical damage. A site-specific mechanism, in Oxidative Damage and Related Enzymes. Life Chemistry Reports, Suppl. 2, pp. 39–47.Google Scholar
  206. Saran, M., Michel, C., and Bors, W., 1990, Reaction of NO with O2- Implications for the action of endothelium-derived relaxing factor (EDRF), Free Radical Res. Commun. 10:221–226.Google Scholar
  207. Sawyer, D. T., and Valentine, J. S., 1981, How super is superoxide? Acc. Chem. Res. 14:393–400.CrossRefGoogle Scholar
  208. Sawyer, D. T., Hage, J. P., and Sobkowiak, A., 1995, Iron(II)-induced activation of 1:1 HOOH/HC1 for the chlorohydroxylation of olefins and the chlorination of hydrocarbons: Chlorinated Fenton chemistry, J. Am. Chem. Soc. 117:106–109.CrossRefGoogle Scholar
  209. Sawyer, D. T., Knag, C., Llobet, A., and Redman, C., 1993, Fenton reagents (1:1 FeI↕Lx/HOOH) react via [LxFeIIOOH(BH+)] (1) as hydroxylases (RH-ROH), not as generators of free hydroxyl radicals (HO), J. Am. Chem. Soc. 115:5817–5818.CrossRefGoogle Scholar
  210. Schaap, A. P., and Zaklika, K. A., 1979, 1,2-Cycloaddition reactions of singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 173–242, Academic Press, New York.Google Scholar
  211. Schöneich, C., Aced, A., and Asmus, K.-D., 1991, Halogenated peroxyl radicals as two-electron-transfer agents. Oxidation of organic sulfides to sulfoxides, J. Am. Chem. Soc. 113:376–377.Google Scholar
  212. Scully, F. E., and Hoigné, J., 1987, Rate constants for reactions of singlet oxygen with phenols and other compounds in water, Chemosphere 16:681–694.CrossRefGoogle Scholar
  213. Scurlock, R., Rougee, M., and Bensasson, R. V., 1989, Redox properties of phenols, their relationships to singlet oxygen quenching and to their inhibitory effects on benzo(a)pyrene-induced neoplasia, Free Radical Res. Commun. 8:251–258.Google Scholar
  214. Shi, X., Mao. Y., Knapton, A. D., Ding, M, Rojanasakul, Y., Gannett, P. M., Dalal, N., and Liu, K., 1994a, Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: Role of a Cr(IV)-mediated Fenton-like reaction, Carcinogenesis 15:2475–2478.PubMedGoogle Scholar
  215. Shi, X., Rojanasakul, Y, Gannett, P., Liu, K., Mao, Y, Daniel, L. N., Ahmed, N., and Saffiotti, U., 1994b, Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH, J. Inorg. Biochem. 56:77–86.PubMedGoogle Scholar
  216. Shoute, L. C.T., Alfassi, Z. B., Neta, P., and Huie, R. E., 1994, Rate constants for reactions of (perhaloalkyl)peroxyl radicals with alkenes in methanol, J. Phys. Chem. 98:5701–5704.Google Scholar
  217. Solomon, D., Peretz, P., and Faraggi, M., 1982, Chemical properties of water-soluble prophyrins. 2. The reaction of iron(III) tetrakis(4-N-methylpyridyl) prophyrin with the superoxide radical dioxygen couple, J. Phys. Chem. 86:1842–1849.CrossRefGoogle Scholar
  218. Spinks, J. W. T., and Woods, R. J., 1990, Introduction to Radiation Chemistry, 3rd ed., Wiley, New York.Google Scholar
  219. Sprung, J. L., Akimota, H., and Pitts, J. N., 1974, Nitrogen dioxide catalyzed geometric isomerization of olefins. Isomerization kinetics of the 2-butenes and the 2-pentenes, J. Am. Chem. Soc. 96:6549–6554.CrossRefGoogle Scholar
  220. Squadrito, G. L., Jin, X., and Pryor, W. A., 1995, Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite, Arch. Biochem. Biophys. 322:53–59.CrossRefPubMedGoogle Scholar
  221. Stanbury, D. M., 1989, Reduction potentials involving inorganic free radicals in aqueous solution, Adv. Inorg. Chem. 33:69–138.Google Scholar
  222. Stohs, S. J., and Bagchi, D., 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18:321–336.CrossRefGoogle Scholar
  223. Sutton, H. C., 1975, Reactions of the hydroperoxyl radical (HO2) with nitrogen dioxide and tetranitromethane in aqueous solution, J. Chem. Soc. Faraday Trans. I 71:2142–2147.CrossRefGoogle Scholar
  224. Sutton, H. C., Seddon, W. A., and Sopchyshyn, F. C., 1978, Pulse radiolysis: Evidence for the reaction of HO2 with NO2 in aqueous solution, Can. J. Chem. 56:1961–1964.Google Scholar
  225. Taft, R. W., 1956, Separation of polar, steric, and resonance effects in reactivity, in Steric Effects in Organic Chemistry (M. S. Newman, ed.), p. 619, Wiley, New York.Google Scholar
  226. Taha, Z., Kiechle, F., and Malinski, T., 1992, Oxidation of nitric oxide by oxygen in biological systems monitored by porphyrinic sensor, Biochem. Biophys. Res. Commun. 188:734–739.CrossRefPubMedGoogle Scholar
  227. Tanielian, C., and Mechin, R., 1994, Reaction and quenching of singlet molecular oxygen with esters of polyunsaturated fatty acids, Photochem. Photobiol. 59:263–268.PubMedGoogle Scholar
  228. Titov, A. I., 1963, The free radical mechanism of nitration, Tetrahedron 19:557–580.CrossRefGoogle Scholar
  229. Tratnyek, P. G., and Hoigné, J., 1991, Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen, Environ. Sci. Technol. 25:1596–1604.CrossRefGoogle Scholar
  230. Tsai, J.-H. M., Harrison, J. G., Martin, J. C., Hamilton, T. P., van der Woerd, M., Jablonsky, M. J., and Beckman, J. S.,1994, Role of conformation of peroxynitrate anion (ONOO-) in its stability and toxicity, J. Am. Chem. Soc. 116:4115–4116.Google Scholar
  231. Tsang, W., 1996, Heats of formation of organic free radicals by kinetic methods, in Energetics of Free Radicals (A. Greenberg and J. Liebman, eds.), pp. 22–58, Chapman & Hall, London.Google Scholar
  232. Uppu, R. M., Squadrito, G. L., and Pryor, W. A., 1996, Acceleration of peroxynitrite oxidants by carbon dioxide, Arch. Biochem. Biophys. 327:335–343.CrossRefPubMedGoogle Scholar
  233. van der Vliet, A., Eiserich, J. P., O’Neill, C. A., Halliwell, B., and Cross, C. E., 1995, Tyrosine modification by reactive nitrogen species: A closer look, Arch. Biochem. Biophys. 319:341–349.PubMedGoogle Scholar
  234. von Sonntag, C., and Schuchmann, H.-P., 1991, The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods, Angew. Chem. Int. Ed. Engl. 30:1229–1253.Google Scholar
  235. Wagner, B. A., Buettner, G. R., and Burns, C. P., 1994, Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of celllipid bis-allylic hydrogen content, Biochemistry 33:4449–4453.CrossRefPubMedGoogle Scholar
  236. Walling, C., 1975, Fenton’s reagent revisited, Acc. Chem. Res. 8:125–131.CrossRefGoogle Scholar
  237. Wallington, T. J., Dagaut, P., and Kurylo, M. J., 1988, Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds, J. Phys.Chem. 92:5024–5028.Google Scholar
  238. Wallington, T. J., Dagaut, P., and Kurylo, M. J., 1992, Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase, Chem. Rev. 92:667–710.CrossRefGoogle Scholar
  239. Wardman, P., and Candeias, L. P., 1996, Fenton chemistry: An introduction, Radial. Res. 145:523–531.Google Scholar
  240. Warneck, P., and Wurzinger, C., 1988, Product quantum yields for the 305-nm photodecomposition of NO3- in aqueous solution, J. Phys. Chem. 92:6278–6283.CrossRefGoogle Scholar
  241. Weiberg, K. B., 1964, Physical Organic Chemistry, Wiley, New York.Google Scholar
  242. Wilkinson, F., and Brummer, J. G., 1981, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution, J. Phys. Chem. Ref. Data 10:809–999.Google Scholar
  243. Wink, D. A., Darbyshire, J. E, Nims, R. W., Saavedra, J. E., and Ford, P. C., 1993a, Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O reaction, Chem. Res. Toxicol. 6:23–27.CrossRefPubMedGoogle Scholar
  244. Wink, D. A., Hanbauer, I., Krishna, M. C., DeGraff, W., Gamson, J., and Mitchell, J. B., 1993b, Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc. Natl. Acad. Sci. USA 90:9813–9817.PubMedGoogle Scholar
  245. Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C., DeGraff, W. G., and Mitchell, J. B., 1994a, Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction, Chem. Res. Toxicol. 7:519–525.CrossRefPubMedGoogle Scholar
  246. Wink, D. A., Wink, C. B., Nims, R. W., and Ford, P. C., 1994b, Oxidizing intermediates generated in the fenton reagent: Kinetic arguments against the intermediacy of the hydroxyl radical, Environ. Health Perspect. 102:11–15.PubMedGoogle Scholar
  247. Wink, D. A., Cook, J. A., Krishna, M. C., Hanbauer, I., DeGraff, W., Gamson, J., and Mitchell, J. B., 1995, Nitric oxide protects against alkyl peroxide-mediated cytotoxicity: Further insights into the role nitric oxide plays in oxidative stress, Arch. Biochem. Biophys. 319:402–407.CrossRefPubMedGoogle Scholar
  248. Wink, D. A., Cook, J. A., Pacelli, R., DeGraff, W., Gamson, J., Liebmann, J., Krishna, M. C., and Mitchell, J. B., 1996, The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: A direct correlation between nitric oxide formation and protection, Arch. Biochem. Biophys. 331:241–248.CrossRefPubMedGoogle Scholar
  249. Winterbourn, C. C., 1985, Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite, Biochim. Biophys. Acta 840:204–210.PubMedGoogle Scholar
  250. Winterbourn, C. C., 1993, Superoxide as an intercellular radical sink, Free Radical Biol. Med. 14:85–90.CrossRefGoogle Scholar
  251. Winterbourn, C. C., Berg, J. J. M. v. d., Roitman, E., and Kuypers, F. A., 1992, Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid, Arch. Biochem. Biophys. 296:547–555.CrossRefPubMedGoogle Scholar
  252. Wolcott, R. G., Franks, B. S., Hannum, D. M., and Hurst, J. K., 1994, Bactericidal potency of hydroxyl radical in physiological environments, J. Biol. Chem. 269:9721–9728.PubMedGoogle Scholar
  253. Yamazaki, I., and Piette, L. H., 1991, EPR Spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide, J. Am. Chem. Soc. 113:7588–7593.CrossRefGoogle Scholar
  254. Yang, G., Candy, T. E. G., Boaro, M., Wilkin, H. E., Jones, P., Nazhat, N. B., Saadalla-Nazhat, R. A., and Blake, D. R., 1992, Free radical yields from the homolysis of peroxynitrous acid, Free Radical Biol. Med. 12:327–330.CrossRefGoogle Scholar
  255. Ye, M., and Schuler, R. H., 1989, Second-order combination reactions of phenoxyl radicals, J. Phys. Chem. 93:1989–1902.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert E. Huie
    • 1
  • P. Neta
    • 1
  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyGaithersburg

Personalised recommendations