Skip to main content

A computer scientist's view of life, the universe, and everything

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

Abstract

Is the universe computable? If so, it may be much cheaper in terms of information requirements to compute all computable universes instead of just ours. I apply basic concepts of Kolmogorov complexity theory to the set of possible universes, and chat about perceived and true randomness, life, generalization, and learning in a given universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Chaitin. Algorithmic Information Theory. Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  2. A.N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1:1–11, 1965.

    MATH  Google Scholar 

  3. L. A. Levin. Laws of information (nongrowth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10(3):206–210, 1974.

    Google Scholar 

  4. L. A. Levin. Randomness conservation inequalities: Information and independence in mathematical theories. Information and Control, 61:15–37, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks, 1997. In press.

    Google Scholar 

  6. J. Schmidhuber, J. Zhao, and N. Schraudolph. Reinforcement learning with selfmodifying policies. In S. Thrun and L. Pratt, editors, Learning to learn. Kluwer, 1997. To appear.

    Google Scholar 

  7. J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with successstory algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning, 26, 1997. In press.

    Google Scholar 

  8. C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System Technical Journal, XXVII:379–423, 1948.

    MathSciNet  Google Scholar 

  9. R.J. Solomonoff. A formal theory of inductive inference. Part I. Information and Control, 7:1–22, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidhuber, J. (1997). A computer scientist's view of life, the universe, and everything. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052088

Download citation

  • DOI: https://doi.org/10.1007/BFb0052088

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics