Skip to main content

Schema-based learning: Biologically inspired principles of dynamic organization

  • Cognitive Science and AI
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Abstract

We propose a generalized framework Schema-based learning (SBL) for the design of complete and integrated adaptive autonomous agents incorporating general principles of adaptive organization e.g., bootstrap coherence and coherence maximization principles. A schema is an evolutionarily or experience-based constructed recurrent pattern of interaction or expectation (perceptual, motor, reactive, and predictive schemas) with the environment, and coherence is a measure of the congruence between the result of an interaction with the environment and the expectations the agent has for that interaction. SBL attempts to provide a general and formal framework independent of the particularities of implementation, thus allowing the design and analysis of a wide variety of agents. SBL allows the growth of increasingly complex patterns of interaction between the agent and its environment from an initially restricted stock of schemas while allowing for efficient learning by confining statistical estimation to a narrow credit assignment space.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbib, M. A. (1987). Levels of modeling of visually guided behavior. Behav. Brain Sci. 10, 407–465.

    Google Scholar 

  • Arbib, M. A. (1992). Schema Theory. In: The Encyclopedia of Artificial Intelligence. (Shapiro, S., ed.) 2nd Edn pp. 1427–1443. New York, NY: Wiley Interscience.

    Google Scholar 

  • Arkin, R. (1989). Motor Schema based mobile robot navigation. Int. J. Robotics. Res. 8(4), 92–112.

    Google Scholar 

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Trans. Rob. Automation, 2: 14–23.

    Google Scholar 

  • Carbonell, J. G. & Gil, Y. (1990). Learning by experimentation: The Operator Refinement Method. (In Machine Learning: An Artificial Intelligence Approach. Vol. III. Y. Kodratoff & Ryszard Michalski Eds.). Morgan Kaufmann: San Mateo.

    Google Scholar 

  • Collett, T. (1982). Do toads plan routes? A study of detour behavior of B. viridis. J. Comp. Physiol. A, 146:261–271.

    Google Scholar 

  • Corbacho, F. & Arbib, M. A. (1995). Learning to Detour. Adaptive Behavior, 3(4), 419–468.

    Google Scholar 

  • Corbacho, F. & Arbib, M. A. (1996a). Learning to Detour and Schema-based Learning. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior.

    Google Scholar 

  • Corbacho, F. & Arbib, M. A. (1996b). Schema-based Learning. (in preparation).

    Google Scholar 

  • Drescher, G. L. (1991). Made-Up Minds. Cambridge: MIT Press.

    Google Scholar 

  • Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The Updating of the Representation of Visual Space in Parietal Cortex by Intended Eye Movements. Science, 255: 90–92.

    Google Scholar 

  • Foner, L. N. & Maes. P. (1994) Paying attention to what's important: using focus of attention to improve unsupervised learning. Proceedings of the Third International Conference on Simulation of Adaptive Behavior.

    Google Scholar 

  • Hummel, R. A., & Zucker, S. W. (1983) On the Foundations of Relaxation Labelling Processes, IEEE Trans. Pattern Analysis and Machine Intelligence, 5:267–287.

    Google Scholar 

  • Maes, P. & Brooks, R. A. (1990). Learning to coordinate behaviors. AAAI-90, Boston, 796–802.

    Google Scholar 

  • Piaget, J. (1954). The Construction of Reality in the Child. New York: Ballantine.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., and Williams. R. J. (1986). Learning internal representations by error propagation. In Parallel distributed processing: Explorations in the microstructure of cognition (D. E. Rumelhart, and J. McClelland, eds.), vol. 1, pp. 318–362. The MIT Press/Bradford Books.

    Google Scholar 

  • Shen, W-M. (1994). Autonomous Learning from the Environment. New York: W. H. Freeman and Company.

    Google Scholar 

  • Thrun, S. (1996). Explanation-based Neural Network Learning: A lifelong learning problem. Kluwer Academic Publishers: MA.

    Google Scholar 

  • von der Malsburg, C. (1986). Am I Thinking Assemblies? In Brain Theory, G. Palm & A. Aertsen (Eds.). Springer-Berlag, Berlin.

    Google Scholar 

  • von der Malsburg, C. (1994). The Correlation Theory of Brain Function, (Reprint) In Models of Neural Networks II (E. Domany, J. L. van Hemmen, and K. Schulten, eds.), Ch. 2. pp. 95–119. Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corbacho, F.J., Arbib, M.A. (1997). Schema-based learning: Biologically inspired principles of dynamic organization. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032528

Download citation

  • DOI: https://doi.org/10.1007/BFb0032528

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics