Skip to main content

New LMI Criteria to the Global Asymptotic Stability of Uncertain Discrete-Time Systems with Time Delay and Generalized Overflow Nonlinearities

  • Conference paper
  • First Online:
Advances in VLSI, Communication, and Signal Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 587))

Abstract

This paper investigates the problem of stability analysis of discrete-time systems under the effect of generalized overflow nonlinearities, parameter uncertainties, and time delay. The systems under assumption involve norm-bounded parameter uncertainties. Two stability criteria based on Linear Matrix Inequality (LMI) approach are presented. The usefulness of the presented criteria is numerically proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, X., Zhang, X., Wang, X.: Stability analysis for discrete-time markovian jump systems with time-varying delay: a homogeneous polynomial approach. IEEE Access 5, 27573–27581 (2017). https://doi.org/10.1109/ACCESS.2017.2775606

    Article  Google Scholar 

  2. Wu, L., Lam, J., Yao, X., Xiong, J.: Robust guaranteed cost control of discrete‐time networked control systems. Optim. Control. Appl. Methods 32(1), 95–112 (2011). https://doi.org/10.1002/oca.932

    Article  MathSciNet  Google Scholar 

  3. Zhang, C.K., He, Y., Jiang, L., Wang, Q.G., Wu, M.: Stability analysis of discrete-time neural networks with time-varying delay via an extended reciprocally convex matrix inequality. IEEE Trans. Cybern. 47(10), 3040–3049 (2017). https://doi.org/10.1109/TCYB.2017.2665683

    Article  Google Scholar 

  4. Zhang, D., Shi, P., Zhang, W.A., Yu, L.: Energy-efficient distributed filtering in sensor networks: a unified switched system approach. IEEE Trans. Cybern. 47(7), 1618–1629 (2017). https://doi.org/10.1109/TCYB.2016.2553043

    Article  Google Scholar 

  5. Kandanvli, V.K.R., Kar, H.: Robust stability of discrete-time state-delayed systems employing generalized overflow nonlinearities. Nonlinear Anal.: Theory, Methods Appl. 69(9), 2780–2787 (2008). https://doi.org/10.1016/j.na.2007.08.050

    Article  MathSciNet  MATH  Google Scholar 

  6. Kandanvli, V.K.R., Kar, H.: Robust stability of discrete-time state-delayed systems with saturation nonlinearities: Linear matrix inequality approach. Signal Process 89(2), 161–173 (2009). https://doi.org/10.1016/j.sigpro.2008.07.020

    Article  MATH  Google Scholar 

  7. Kandanvli, V.K.R., Kar, H.: An LMI condition for robust stability of discrete-time state-delayed systems using quantization/overflow nonlinearities. Signal Process 89(11), 2092–2102 (2009). https://doi.org/10.1016/j.sigpro.2009.04.024

    Article  MATH  Google Scholar 

  8. Guan, X., Lin, Z., Duan, G.: Robust guaranteed cost control for discrete-time uncertain systems with delay. IEE Proc. Control Theory Appl. 146(6), 598–602 (1999). https://doi.org/10.1049/ip-cta:19990714

    Article  Google Scholar 

  9. Bakule, L., Rodellar, J., Rossell, J.M.: Robust overlapping guaranteed cost control of uncertain state-delay discrete-time systems. IEEE Trans. Automat. Control 51(12), 1943–1950 (2006). https://doi.org/10.1109/TAC.2006.886536

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W.H., Guan, Z.H., Lu, X.: Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay. IEE Proc. Control Theory Appl. 150(4), 412–416 (2003). https://doi.org/10.1049/ip-cta:20030572

    Article  Google Scholar 

  11. Mahmoud, M.S.: Robust Control and Filtering for Time-Delay Systems. CRC Press, Marcel-Dekker, New York (2000)

    Book  Google Scholar 

  12. Mahmoud, M.S., Boukas, E.K., Ismail, A.: Robust adaptive control of uncertain discrete-time state-delay systems. Comput. Math. Appl. 55(12), 2887–2902 (2008). https://doi.org/10.1016/j.camwa.2007.11.021

    Article  MathSciNet  Google Scholar 

  13. Xu, S.: Robust H filtering for a class of discrete-time uncertain nonlinear systems with state delay. IEEE Trans. Circuits Syst. I 49(12), 1853–1859 (2002). https://doi.org/10.1109/tcsi.2002.805736

    Article  Google Scholar 

  14. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA (1994)

    Google Scholar 

  15. Xu, S., Lam, J., Lin, Z., Galkowski, K.: Positive real control for uncertain two-dimensional systems. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(11), 1659–1666 (2002). https://doi.org/10.1109/TCSI.2002.804531

    Article  MathSciNet  MATH  Google Scholar 

  16. Bakule, L., Rodellar, J., Rossell, J.M.: Robust overlapping guaranteed cost control of uncertain state-delay discrete-time systems. IEEE Trans. Autom. Control 51(12), 1943–1950 (2006). https://doi.org/10.1109/TAC.2006.886536

    Article  MathSciNet  MATH  Google Scholar 

  17. Kandanvli, V.K.R., Kar, H.: A delay-dependent approach to stability of uncertain discrete-time state-delayed systems with generalized overflow nonlinearities. ISRN Comput. Math. (2012). https://doi.org/10.5402/2012/171606

    Article  Google Scholar 

  18. Liu, D., Michel, A.N.: Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 39(10), 798–807 (1992). https://doi.org/10.1109/81.199861

    Article  MATH  Google Scholar 

  19. Rani, P., Kokil, P., Kar, H.: l2l suppression of limit cycles in interfered digital filters with generalized overflow nonlinearities. Circuits, Syst. Signal Process. 36(7), 2727–2741 (2017). https://doi.org/10.1007/s00034-016-0433-1

    Article  MATH  Google Scholar 

  20. Dey, A., Kar, H.: LMI-based criterion for the robust stability of 2D discrete state-delayed systems using generalized overflow nonlinearities. J. Control Sci. Eng. 23 (2011). https://doi.org/10.1155/2011/271515

    Article  MathSciNet  Google Scholar 

  21. Kar, H.: An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Proc. 17(3), 685–689 (2007). https://doi.org/10.1016/j.dsp.2006.11.003

    Article  Google Scholar 

  22. Kokil, P., Kandanvli, V.K.R., Kar, H.: A note on the criterion for the elimination of overflow oscillations in fixed-point digital filters with saturation arithmetic and external disturbance. AEU-Int. J. Electron. Commun. 66(9), 780–783 (2012). https://doi.org/10.1016/j.aeue.2012.01.004

    Article  Google Scholar 

  23. Kar, H., Singh, V.: A new criterion for the overflow stability of second-order state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(3), 311–313 (1998). https://doi.org/10.1109/81.662720

    Article  Google Scholar 

  24. Nam, P.T., Pathirana, P.N., Trinh, H.: Discrete wirtinger-based inequality and its application. J. Franklin Inst. 352(5), 1893–1905 (2015). https://doi.org/10.1016/j.jfranklin.2015.02.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Tadepalli, S.K., Kandanvli, V.K.R., Vishwakarma, A.: Criteria for stability of uncertain discrete-time systems with time-varying delays and finite wordlength nonlinearities. Trans. Inst. Meas. Control 40(9), 2868–2880 (2017). https://doi.org/10.1177/0142331217709067

    Article  Google Scholar 

  26. Kokil, P., Parthipan, C.G., Jogi, S., Kar, H.: Criterion for realizing state-delayed digital filters subjected to external interference employing saturation arithmetic. Cluster Comput. 1–8 (2018)

    Google Scholar 

  27. Kokil, P., Arockiaraj, S.X., Kar, H.: Criterion for limit cycle-free state-space digital filters with external disturbances and generalized overflow nonlinearities. Trans. Inst. Meas. Control 40(4), 1158–1166 (2018). https://doi.org/10.1177/0142331216680287

    Article  Google Scholar 

  28. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. IEEE, New Orleans, LA, USA (2001). https://doi.org/10.1109/cacsd.2004.1393890

  29. Mary, T.J., Rangarajan, P.: Delay-dependent stability analysis of microgrid with constant and time-varying communication delays. Electr. Power Compon. Syst. 44(13), 1441–1452 (2016). https://doi.org/10.1080/15325008.2016.1170078

    Article  Google Scholar 

  30. Razeghi-Jahromi, M., Seyedi, A.: Stabilization of distributed networked control systems with constant feedback delay. In: IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 4619–4624. IEEE, Florence, Italy (2013). https://doi.org/10.1109/cdc.2013.6760612

Download references

Acknowledgements

The corresponding author wishes to thank the TEQIP-III grant, MNNIT Allahabad for providing scholarship to pursue his research work. The authors of the paper wish to thank the reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, P.K., Kandanvli, V.K.R. (2020). New LMI Criteria to the Global Asymptotic Stability of Uncertain Discrete-Time Systems with Time Delay and Generalized Overflow Nonlinearities. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_79

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics