Skip to main content

Short Channel Effects (SCEs) Based Comparative Study of Double-Gate (DG) and Gate-All-Around (GAA) FinFET Structures for Nanoscale Applications

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 587))

Abstract

The FinFET device architecture is a leading contender in the field of electronic integrated circuits (ICs). A comparative study of double-gate (DG) and gate-all-around (GAA) FinFET structures on the ground of performance parameters like on-state current (ION), off-current (IOFF), subthreshold swing (SS), drain induced barrier lowering (DIBL) and threshold voltage (Vt) have been done. It has been found that GAA FinFETs are able to control the short channel effects (SCEs) more accurately over DG FinFETs when fin width to gate length ratio is properly optimized. Further, the comparison between rectangular and cylindrical channel GAA FinFETs has also done and found that cylindrical GAA FinFETs gives a better performance with respect to aforementioned parameters. All the numerical simulated results were performed on TCAD supported the stated findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roldán, J.B., Godoy, A., Gámiz, F., Balaguer, M.: Modeling the centroid and the inversion charge in cylindrical surrounding gate MOSFETs, including quantum effects. IEEE Trans. Electron Devices 55, 411–416 (2008)

    Article  Google Scholar 

  2. Havaldar, D.S., Katti, G., DasGupta, N., DasGupta, A.: Subthreshold current model of FinFETs based on analytical solution of 3-D poisson’s equation. IEEE Trans. Electron Devices 53(4), 737–742 (2006)

    Article  Google Scholar 

  3. Veeraraghavan, S., Fossum, J.G.: Short-channel effects in SO1 MOSFET’s. IEEE Trans. Electron Devices 36(3), 522–528 (1989)

    Article  Google Scholar 

  4. Katti, G., DasGupta, N., DasGupta, A.: Threshold voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution of 3-D poisson’s equation. IEEE Trans. Electron Devices 51(7), 1169–1177 (2004)

    Article  Google Scholar 

  5. Pei, G., Kedzierski, J., Oldiges, P., Ieong, M., Kan, E.C.-C.: FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49(8), 1411–1419 (2002)

    Article  Google Scholar 

  6. Frank, D.J., Laux, S.E., Fischetti, M.V.: Monte Carlo simulation of 30 nm dual-gate MOSFET: how short can Si go?. IEDM Tech. Dig. 553–556 (1992)

    Google Scholar 

  7. Yan, R.-H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992)

    Article  Google Scholar 

  8. Suzuki, K., Tanaka, T., Tasaka, Y., Horie, H., Arimoto, Y.: Scaling theory for double-gate SOI MOSFETs. IEEE Trans. Electron Devices 40, 2326–2329 (1993)

    Article  Google Scholar 

  9. Colinge, J.-P.: Multiple-gate SOI MOSFETs. Solid State Electron 48(6), 897–905 (2004)

    Article  Google Scholar 

  10. Colinge, J.-P.: Novel gate concepts for MOS devices. In: Proceedings of the ESSDERC, Leuven, Belgium, pp. 45–49 (2004)

    Google Scholar 

  11. Colinge, J.-P., Gao, M.H., Romano-Rodriguez, A., Maes, H., Claeys, C.: Silicon-on-insulator gate-all-around devices. In: IEDM Technical Digest, San Francisco, CA, pp. 595–598 (1990)

    Google Scholar 

  12. Narendar, V., Mishra, R.A.: Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct. 85, 357–369 (2015)

    Article  Google Scholar 

  13. Narendar, V., Girdhardas, K.A.: Surface potential modeling of graded-channel gate-stack (GCGS) high-K dielectric dual-material double-gate (DMDG) MOSFET and analog/RF performance study. J. Silicon (2018). https://doi.org/10.1007/s12633-018-9826-z)

    Article  Google Scholar 

  14. Narendar, V.: Performance enhancement of FinFET devices with gate-stack (GS) high-K dielectrics for nanoscale applications. J. Silicon (2018). https://doi.org/10.1007/s12633-018-9774-7

    Article  Google Scholar 

  15. Song, J.Y., Choi, W.Y., Park, J.H., Lee, J.D., Park, B.-G.: Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Electron Devices 5(3), 186–191 (2006)

    Google Scholar 

  16. Pott, V., Moselund, K.E., Bouvet, D., De Michielis, L., Ionescu, A.M.: Fabrication and characterization of gate-all-around silicon nanowires on bulk silicon. IEEE Trans. Electron Devices 7(6), 733–744 (2008)

    Article  Google Scholar 

  17. Abd-Elhamid, H., Iñiguez, B., Roig, J.: Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate all around MOSFETs. IEEE Trans. Electron Devices 52(3), 572–579 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadthiya Narendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narendar, V., Parihar, R., Pandey, A.K. (2020). Short Channel Effects (SCEs) Based Comparative Study of Double-Gate (DG) and Gate-All-Around (GAA) FinFET Structures for Nanoscale Applications. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics