Skip to main content

Plant-Microbe-Soil Interactions for Reclamation of Degraded Soils: Potential and Challenges

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Abstract

Increasing rate of industrialization has been dramatically causing elevated release of chemicals such as heavy metals, pesticides, hydrocarbons and dyes into the environment leading to degradation of soil. However, soil microorganisms and plants have the potential to survive in polluted soils and aid in the process of soil reclamation. The responses of plant and soil microbial community are cooperative towards environmental stress and contamination. The rhizospheric microorganisms reside in rhizosphere of plants and compete with plants for their survival and in return, their unified interactions display a critical role in acclimatizing to the stressed environment, eventually explored to enhance phytoremediation processes. The plant-microbe-soil interactions are important for increasing soil fertility both in the healthy and degraded soil ecosystems. Nevertheless, the concept of plant-microbe-soil interactions in healthy soil system is required to be studied in degraded soils for their efficient reclamation. The current review aims to study the prospects of plant-microbe-soil interactions for reclamation of degraded soil ecosystems. In addition, the various causes behind soil degradation and different remediation techniques will be highlighted. The importance of plant-soil interactions for reclamation of degraded soils could be explored further for restoration of various contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Kumari D, Pan X (2011) Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium. Res J Microbiol 6:166–171

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant growth promoting bacteria. J Genet Eng Biotechn 13(1):51–58

    Article  Google Scholar 

  • An L, Pan Y, Wang Z, Zhu C (2011) Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 345:237–245

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anon (2006) Dirty metal, mining communities and environment, earthworks. Washington, Oxfam America, p p4

    Google Scholar 

  • Arora NK (2018) Bioremediation: a green approach for restoration of polluted ecosystems. Environ Sustain 1:305

    Article  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J (2018) Environmental sustainability: challenges and viable solutions. Environ. Sustain 1(4):309–350

    Article  Google Scholar 

  • Aulakh MS, Sidhu GS (2015) Soil degradation in India: Causes, major threats, and management options. In: MARCO symposium 2015 – Next challenges of agro-environmental research in Monsoon Asia, National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan, pp 151–156.

    Google Scholar 

  • Ayoub K, Hullebusch EDV, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28

    Article  CAS  Google Scholar 

  • Azaizeh H, Castro PML, Kidd P (2011) Biodegradation of organic xenobiotic pollutants in the rhizosphere. In: Schröder P, Collins CD (eds) Organic xenobiotics and plants. Springer, Netherlands, pp 191–215

    Chapter  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Beil S, Mason JR, Timmis KN, Pieper DH (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180:5520–5528

    CAS  Google Scholar 

  • Bhattacharyya R, Ghosh B, Mishra P, Mandal B, Rao C, Sarkar D, Das K, Anil K, Lalitha M, Hati K, Franzluebbers A (2015) Soil degradation in India: Challenges and potential solutions. Sustainability 7:3528–3570

    Article  CAS  Google Scholar 

  • Blackburn JW, Hafker WR (1993) The impact of biochemistry, bioavailability and bioactivity on the selection of bioremediation techniques. Trends Biotechnol 11:328–333

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Boopathy R (2002) Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J Hazard Mater 92:103–114

    Article  CAS  Google Scholar 

  • Boopathy R, Manning J (1999) Surfactant-enhanced bioremediation of soil contaminated with 2,4,6- trinitrotoluene in soil slurry reactors. Water Environ Res 71:119–124

    Article  CAS  Google Scholar 

  • Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546

    Article  CAS  Google Scholar 

  • Brown RA (2003) In situ chemical oxidation. Word Journal of International Linguist Association

    Google Scholar 

  • Burger J, Zipper CE (2011) How to restore forests on surface-mined land. Virginia Coop Ext Serv 460:1–20

    Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12:34–48

    Article  CAS  Google Scholar 

  • Chigbo C, Nnadi EO (2014) Exploring potential of using phytoremediation for co-contaminated soils.

    Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of Phytotechnologies to remediate soils: Still a promising tool? Sci World J:1–10

    Article  CAS  Google Scholar 

  • Covington WW, Niering WA, Starkey E, Walker J (1999) Ecosystem restoration and management: scientific principles and concepts. In Szaro RC, Johnson NC, Sexton WT, Malk AJ (eds) Ecological stewardship: a common reference for ecosystem management. Volume II, pp 599–617.

    Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870

    Article  CAS  Google Scholar 

  • Das P, Datta R, Maknis K, Sarker D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983

    Article  CAS  Google Scholar 

  • Das S, Dash HR (2014) Microbial bioremediation: A potential tool for restoration of contaminated areas. In: Microbial biodegradation and bioremediation. Elsevier Press, pp 1–21.

    Google Scholar 

  • Dent D (1986) Acid sulphate soils: a baseline for research and development. International Institute for Land Reclamation and Improvement, Wageningen publication, pp39:204.

    Google Scholar 

  • Dhanya MS (2014) Advances in microbial biodegradation of chlorpyrifos. J Environ Res Development 9(1):232

    Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2010) Uptake-related parameters as indices of phytoremediation potential. Biologia 65:1004–1011

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and entophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206

    Article  CAS  Google Scholar 

  • Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN (1997) Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonas. Nat Biotechnol 15:378–382

    Article  CAS  Google Scholar 

  • European Commission (2013) Soil contamination : Impacts on human health. Sci Environ Policy:1–29

    Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  Google Scholar 

  • Ghosh R (2002) Land use in mining areas of India. Envis Monograph No.9 by CME ISSN: 0972 – 4656.

    Google Scholar 

  • Gopinath P, Kumar SR (2017) Nano-bioremediation applications of nanotechnology for bioremediation. In: Handbook of Advanced Industrial and Hazardous Wastes Management. CRC Press, pp 27–48.

    Google Scholar 

  • Gunderson JJ, Knight JD, Van Rees KCJ (2007) Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. J Environ Qual 36(4):927–934

    Article  CAS  Google Scholar 

  • Gupta AK, Sinha S (2006) Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere 64:161–173

    Article  CAS  Google Scholar 

  • Gupta R, Chugh G (2016) Application of soil-plant-microbe interactions for eco-restoration of heavy metal contaminated mining sites-a review. IJATES.

    Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Till Res 82:121–145

    Article  Google Scholar 

  • Hance RJ, Hussain M, Ferris IG (2001) Impact of long term pesticide usage on soil properties using radiotracer techniques. Proceedings of a final research coordination meeting (No. IAEA-TECDOC – 1248). Joint FAO/IAEA division of nuclear techniques in food and agriculture.

    Google Scholar 

  • Hao XZ, Zhou DM, Wang YJ, Chen HM (2004) Study of rye grass in copper mine tailing treated with peat and chemical fertilizer. Acta Pedol Sin 41:645–648

    Google Scholar 

  • Hedge R, Natarajan A, Naidu LGK, Dipak S (2011) Soil degradation, soil erosion. Issues in Agriculture. In Tech.

    Google Scholar 

  • Hellin J, Haigh MJ (2002) Better land husbandry in Honduras: Towards the new paradigm in conserving soil, water and productivity. L Degrad Dev 13:233–250

    Article  Google Scholar 

  • Hrapovic L, Sleep BE, Major DJ, Hood ED (2005) Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39:2888–2897

    Article  CAS  Google Scholar 

  • Huang A, Wei B, Mo J, Wang Y, Ma L (2018) Conformation and activity alteration of horseradish peroxidase induced by the interaction with gene carrier polyethyleneimines. Spectrochim. Acta Mol Biomol Spectrosc 188:90–98

    Article  CAS  Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ, Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol 61:1480–1487

    CAS  Google Scholar 

  • Johnson D, Maguire K, Anderson D, McGrath S (2004) Enhanced dissipation of chrysene in planted soil: the impact of rhizobial inoculum. Soil Biol Biochem 36:33–38

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant and Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones KCKC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation. Intech Open, pp 289–320.

    Google Scholar 

  • Kavvadias V (2014) Soil degradation. Soil science institute of Athens-National Agricultural Research Foundation.

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732

    Article  Google Scholar 

  • Kim D, Park MJ, Koh SC, So JS, Kim E (2002) Three separate pathways for the initial oxidation of limonene, biphenyl, and phenol by Rhodococcus sp strain T104. J Microbiol 40:86–89

    CAS  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180

    Article  CAS  Google Scholar 

  • Kuchner O, Arnold FH (1997) Directed evolution of enzyme catalysts. Trends Biotechnol 15:523–530

    Article  CAS  Google Scholar 

  • Kueper B (1997) Technology practices manual for surfactants and cosolvents (TR-97-2). Advanced applied technology demonstration facility program. Rice Uinversity.

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV (2004) Lugtenberg BJJ. Rhizoremediation : A beneficial plant-microbe interaction bioremediation: a natural method 17:6–15

    CAS  Google Scholar 

  • Kumar M, Sharma S, Gupta S, Kumar V (2018) Mitigation of abiotic stresses in Lycopersicon esculentum by endophytic bacteria. Environmental Sustainability 1(1):71–80

    Article  CAS  Google Scholar 

  • Kumar V, Solanki AS, Sharma S (2009) Yield and economics of Withania somnifera influenced by dual inoculation of Azotobacterchroococcum and Pseudomonas putida. Turkish J Biol 33(3):219–223

    Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Levy DB, Custis KH, Casey WH, Rock PA (1997) A comparison of metal attenuation in mine residue and overburden material from an abandoned copper mine. Appl Geochemistry 12:203–211

    Article  CAS  Google Scholar 

  • Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2017) Multi copper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9:1352–1360

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. CRC Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Logan TJ (1990) Chemical degradation of soil. Adv Soils Sci 11:187–221

    Article  Google Scholar 

  • Luka Y, Highina BK, Zubairu A (2018) Bioremediation: A solution to environmental pollution-a review. Am J Eng Res 7(2):101–109

    Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Marconi AM, Kieboom J, De Bont JAM (1997) Improving the catabolic functions in the toluene-resistant strain Pseudomonas putida s12. Biotechnol Lett 19:603–606

    Article  CAS  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  Google Scholar 

  • Masciandaro G, Macci C, Peruzzi E, Ceccanti B, Doni S (2013) Organic matter–microorganism–plant in soil bioremediation: a synergic approach. Rev Environ Sci Bio 12(4):399–419

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  Google Scholar 

  • Meng L, Qiao M, Arp HPH (2010) Phytoremediation efficiency of a PAH-contaminated industrial soil using rye grass, white clover, and celeryas mono- and mixed-cultures. J Soil Sediment 11:482–490

    Article  CAS  Google Scholar 

  • Miller JH, Chambliss EB, Bargeron CT (2008) Invasive Plants of the Thirteen Southern States. www.invasive.org/seweeds.cfm

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  Google Scholar 

  • Nagle G (2006) Soil degradation- A creeping concern. Geo Factsheet, Curriculum press, Bank house, 105 king street.

    Google Scholar 

  • National Bureau of Soil Survey and Land Use Planning (NBSS&LUP). Annual Report 2005, NBSS&LUP: Nagpur, India.

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    CAS  Google Scholar 

  • Pei XH, Zhan XH, Wang SM, Lin YS, Zhou LX (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779

    Article  CAS  Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2009) Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl Soil Ecol 42:9–17

    Article  Google Scholar 

  • Philosophy DOF, Kulkarni GN (2007) Economics of irrigation induced land degradation and its reclamation in upper.

    Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. CRC Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Prakash V, Saxena S (2017) Molecular overview of heavy metal phytoremediation. In: Handbook of research on inventive bioremediation techniques. IGI Global, pp 247–263.

    Google Scholar 

  • Ramos C, Mølbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    Article  CAS  Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 23(6):917–926

    Article  CAS  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. Chem Sus Chem 1:708–717

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2014) Phytoremediation: Mechanisms and adaptations. Soil Remed Plants Prosp Challen 85:85–105

    Google Scholar 

  • Sahu HB, Dash ES (2011) Land degradation due to mining in India and its mitigation measures. Proceedings of Second International Conference Environmental Science and Technology 6:1–5

    Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review. Crit Rev Environ Sci Technol 35:115–192

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Savei S (2012) An agricultural pollutant : chemical fertilizer. Int J Environ Sci Dev 3:11–14

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:2905–2914

    Article  Google Scholar 

  • Schwitzguébel JP, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants. Environ Sci Pollut Res 9:62–72

    Article  Google Scholar 

  • Segura A, Rodríguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2:452–464

    Article  CAS  Google Scholar 

  • Shao Z, Zhao H, Giver L, Arnold FH (1998) Random-priming in vitro recombination: An effective tool for directed evolution. Nucleic Acids Res 26:681–683

    Article  CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Env Management 210:10–22

    Article  CAS  Google Scholar 

  • Shi Q, Lin Y, Zhang E, Yan H, Zhan J (2013) Impacts of cultivated land reclamation on the climate and grain production in Northeast China in the future 30 years. Adv Meteorol

    Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Singh AN, Raghubanshi AS, Singh JS (2002) Plantations as a tool for mine spoil restoration. Curr Sci 82:1436–1441

    CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  Google Scholar 

  • Singh KD, Sharma S, DwivediA PP, Thakur RL, Kumar V (2007) Microbial decolorization and bioremediation of melanoidin containing molasses spent wash. J Environ biol 28(3):675

    CAS  Google Scholar 

  • Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14(1):1232–1277

    Article  CAS  Google Scholar 

  • Suraj B, Reddy CP, Verma M (2001) Scientific management and development of saline land. Addressing the challenges of land degradation: an overview and Indian perspective. Proceedings of the national seminar land resource management for food and environmental security. Soil Conserv Soc, India, pp 73–83.

    Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Vangronsveld J, van der Lelie D, Borremans B (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9:85–92

    Article  Google Scholar 

  • Tu C, Teng Y, Luo Y, Sun X, Deng S, Li Z, Liu W, Xu Z (2011) PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediment 11:649–656

    Article  CAS  Google Scholar 

  • Ulrich B (1987) Impact on soils related to industrial activities- part IV: Effects of air pollutants on the soil. In: Barth H, Hemite DL (eds) Scientific basis for soil protection in European Community. Elsevier Applied Science, London, pp 299–311

    Chapter  Google Scholar 

  • Upadhyay N, Verma S, Pratap Singh A, Devi S, Vishwakarma K, Kumar N, Pandey A, Dubey K, Mishra R, Tripathi DK, Rani R (2016) Soil ecophysiological and microbiological indices of soil health: A study of coal mining site in Sonbhadra, Uttar Pradesh. J Soil Sci Plant Nutr 16(3):778–800

    CAS  Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8:778

    Article  Google Scholar 

  • Van Den Akker JJH, Arvidsson J, Horn R (2003) Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union. Soil Till Res 73:1–8

    Article  Google Scholar 

  • Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK, Sharma S (2018) Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Meena VS (ed) Role of Rhizospheric microbes in soil. Springer, Singapore, pp 259–290

    Chapter  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    Article  CAS  Google Scholar 

  • Vishwakarma K, Kumar V, Tripathi DK, Sharma S (2018) Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. Environ Sustain 1(3):253–265

    Article  Google Scholar 

  • Vishwakarma K, Sharma S, Kumar N, Upadhyay N, Devi S, Tiwari A (2016) Contribution of microbial inoculants to soil carbon sequestration and sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 101–113

    Chapter  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wang Y, Xiao M, Geng X, Liu J, Chen J (2007) Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Appl Microbiol Biotechnol 77:733–739

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • White P, Wolf D, Thoma G, Reynolds C (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil- contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Xin Y, Shi Qiang W, Shang Wang P (2009) Remediation of phenanthrene and pyrene in soil by Audan grass (Sorghum vulgare L.). J Agro Environ Sci [Online]

    Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Yan M, Chen M, Lai C, Jiang H, Wu HP, Chen GM, Wan J (2017) Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb (II) from wastewater. J Taiwan Inst Chem Eng 71:165–173

    Article  CAS  Google Scholar 

  • Yrjälä K, Mancano G, Fortelius C, Ã…kerman ML, Sipilä TP (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15:81–96

    Google Scholar 

  • Zhang S, Li T, Huang H, Zou T, Zhang X, Yu H, Zheng Z, Wang Y (2012) Cd accumulation and phytostabilization potential of dominant plants surrounding mining tailings. Environ Sci Pollut Res 19:3879–3888

    Article  CAS  Google Scholar 

  • Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnol 16(3):258

    Article  CAS  Google Scholar 

  • Zuazo VHD, Pleguezuelo CRR (2009) Soil-erosion and runoff prevention by plant covers: A review. Sustain Agric 28:785–811

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Director, MNNIT Allahabad, Prayagraj for providing necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, N. et al. (2019). Plant-Microbe-Soil Interactions for Reclamation of Degraded Soils: Potential and Challenges. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_6

Download citation

Publish with us

Policies and ethics